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Abstract. Spectral algorithms have been widely used and studied in learning theory

and inverse problems. This paper is concerned with distributed spectral algorithms,

for handling big data, based on a divide-and-conquer approach. We present a learning

theory for these distributed kernel-based learning algorithms in a regression framework

including nice error bounds and optimal minimax learning rates achieved by means

of a novel integral operator approach and a second order decomposition of inverse

operators. Our quantitative estimates are given in terms of regularity of the regression

function, effective dimension of the reproducing kernel Hilbert space, and qualification

of the filter function of the spectral algorithm. They do not need any eigenfunction or

noise conditions and are better than the existing results even for the classical family

of spectral algorithms.
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1. Introduction

In the big data era, data of high volume may necessarily be stored distributively across

multiple servers rather than on one machine. This makes many traditional learning

algorithms requiring access to the entire data set infeasible. Distributed learning, based

on a divide-and-conquer approach, provides a promising way to tackle this problem and

therefore has recently triggered enormous research activities [13, 15, 22]. This strategy

applies a specific learning algorithm to one data subset on each server, to produce an

individual output (function), and then synthesizes a global output by utilizing some

average of the individual outputs. The learning performance of distributed learning has

been observed in many practical applications to be as good as that of a big machine

which could process the whole data. We are interested in error analysis of such learning

algorithms.
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Distributed learning with kernel-based regularized least squares was studied in [23],

and optimal (minimax) learning rates were derived with a matrix analysis approach

by making full use of the linearity of the algorithm under some assumptions on

eigenfunctions of the integral operator associated with the kernel. These assumptions

were successfully removed in the recent paper [11] with an integral operator approach

and also by the linearity of the least squares algorithm.

In this paper, we consider a family of more general learning algorithms, spectral

algorithms, and present a learning theory for distributed spectral algorithms. In

particular, optimal learning rates will be provided by means of a novel integral operator

approach. As a by-product, for the classical spectral algorithms for regression, we shall

improve the existing learning rates in the literature by removing a logarithmic factor

and give optimal learning rates.

Spectral algorithms were proposed to solve ill-posed linear inverse problems (see

e.g. [8]) and employed [12, 2] for regression by noticing connections between learning

theory and inverse problems [7]. For learning functions on a compact metric space

X (input space), a spectral algorithm is defined in terms of a Mercer (continuous,

symmetric and positive semidefinite) kernel K : X ×X → R with κ =
√

supx∈X K(x, x)

and a filter function gλ : [0, κ2] → R with a parameter λ > 0 acting on spectra of

empirical integral operators. For a sample D = {(xi, yi)}N
i=1 with yi ∈ Y ⊆ R (output

space), the empirical integral operator LK,D associated with the kernel K and the input

data D(x) = {x1, · · · , xN} is defined on the reproducing kernel Hilbert space (RKHS)

(HK , 〈, 〉K) associated with K by

LK,D(f) =
1

|D|
∑

x∈D(x)

f(x)Kx, f ∈ HK ,

where Kx = K(·, x) and |D| = N denotes the cardinality of D. Given the kernel K, the

filter function gλ, and the sample D, the spectral algorithm is defined by

fD,λ = gλ(LK,D)
1

|D|
∑

(x,y)∈D

yKx. (1)

Here gλ(LK,D) is an operator on HK defined by spectral calculus: if {(σx

i , φx

i )i} is a set

of normalized eigenpairs of LK,D with the eigenfunctions {φx

i }i forming an orthonormal

basis of HK , then gλ(LK,D) =
∑

i gλ(σ
x

i )φx

i ⊗ φx

i =
∑

i gλ(σ
x

i )〈·, φx

i 〉Kφx

i . This operator

acts on the function fD
ρ := 1

|D|
∑

(x,y)∈D yKx = 1
N

∑N
i=1 yiKxi

∈ HK to produce the

output function fD,λ ∈ HK of spectral algorithm (1).

We take a regression framework in learning theory modelled with a probability

measure ρ on Z := X × Y , and assume throughout the paper that a random sample

D = {(xi, yi)}N
i=1 is drawn independently according to ρ. The learning problem for

regression aims at estimating the regression function fρ : X → R defined by conditional

means as

fρ(x) =

∫

Y
ydρ(y|x), x ∈ X ,
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where ρ(y|x) is the conditional distribution of ρ at x. The output function fD,λ produced

by spectral algorithm (1) is a good estimator of the regression function fρ when the filter

function gλ is chosen properly and the size N of the sample D is large enough.

As a kernel method, spectral algorithm (1) implements learning tasks in the

hypothesis space HK . What is special about this hypothesis space is its reproducing

property asserting that f(x) = 〈f, Kx〉K for any f ∈ HK and x ∈ X . It tells us that

the empirical integral operator satisfies LK,D(f) = 1
|D|
∑

x∈D(x)〈f, Kx〉KKx. So LK,D is a

finite-rank positive operator on HK , and its spectrum is contained in the interval [0, κ2]

since ‖Kx‖K =
√

K(x, x) ≤ κ. Expressing LK,D in terms of its normalized eigenpairs

{(σx

i , φx

i )i} as LK,D =
∑

i σ
x

i 〈·, φx

i 〉Kφx

i , we see that the filter function gλ acting on LK,D

provides an approximate inverse gλ(LK,D) =
∑

i gλ(σ
x

i )〈·, φx

i 〉Kφx

i of LK,D by regularizing

the eigenvalue reciprocal 1
σx

i
to gλ(σ

x

i ).

Let ρX be the marginal distribution of ρ on X and (L2
ρ

X
, ‖ · ‖ρ) be the Hilbert space

of ρX square integrable functions on X . Define the integral operator LK on HK or L2
ρX

associated with the Mercer kernel K by

LK(f) =

∫

X

f(x)KxdρX .

When the sample size N is large, the function fD
ρ = 1

N

∑N
i=1 yiKxi

∈ HK is a good

approximation of its mean
∫

Z yKxdρ =
∫

X fρ(x)KxdρX = LK(fρ) and the empirical

integral operator LK,D approximates LK well. Hence spectral algorithm (1) produces

a good estimator fD,λ = gλ(LK,D)fD
ρ of the regression function fρ when fρ ∈ HK and

gλ(LK,D) is an approximate inverse of LK,D or LK .

Let us illustrate the role in inverting LK,D approximately of the filter function gλ

as an approximation of the reciprocal function 1
σ

by describing two typical spectral

algorithms, Tikhonov regularization or kernel-based regularized least squares algorithm

and spectral cut-off [2, 12, 18].

Example 1. (Tikhonov Regularization) This spectral algorithm has a filter

function gλ : [0, κ2] → R with a parameter λ > 0 given by gλ(σ) = 1
σ+λ

. Its output

function fD,λ equals the solution to the following regularized least squares minimization

problem

fD,λ = arg min
f∈HK

{

1

N

N
∑

i=1

(f(xi) − yi)
2 + λ‖f‖2

K

}

. (2)

To see this, we use the sampling operator Sx : HK → RN defined [16] by Sx(f) =

(f(xi))
N
i=1 = (〈f, Kxi

〉K)N
i=1, where the inner product on RN is the normalized one

given by 〈c, c̃〉RN = 1
N

∑N
i=1 cic̃i for c = (ci)

N
i=1, c̃ = (c̃i)

N
i=1 ∈ RN . If we denote

y = (yi)
N
i=1 ∈ RN , then the minimization problem (2) can be expressed as

fD,λ = arg min
f∈HK

{

‖Sx(f) − y‖2
RN + λ‖f‖2

K

}

,

and its unique solution [8] is fD,λ =
(

ST
x
Sx + λI

)−1
ST

x
y. Note that the adjoint

operator ST
x

: RN → HK is given by ST
x
(c) = 1

N

∑N
i=1 ciKxi

for c ∈ RN . Hence
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ST
x
Sx(f) = 1

N

∑N
i=1 f(xi)Kxi

= LK,D(f) for f ∈ HK , and ST
x
y = 1

N

∑N
i=1 yiKxi

= fD
ρ .

These identities tell us that fD,λ defined by (2) equals (LK,D + λI)−1 fD
ρ = gλ(LK,D)fD

ρ ,

the expression in (1) when gλ(σ) = 1
λ+σ

.

It is well-known that when λ = 0, the minimization problem (2) is ill-posed and its

solution is not unique in general. This can also be seen from the expression (1) since the

operator LK,D =
∑

i σ
x

i 〈·, φx

i 〉Kφx

i is not invertible and the operator g0(LK,D) = L−1
K,D

is not well-defined. When λ > 0, the minimization problem (2) becomes well-posed

and its unique solution is given by means of the operator gλ(LK,D) = (LK,D + λI)−1 =
∑

i
1

σx

i
+λ

〈·, φx

i 〉Kφx

i . Here the filter function gλ maps the eigenvalue σx

i ∈ [0, κ2] in the

spectrum of LK,D to a regularized reciprocal 1
σx

i +λ
instead of the reciprocal itself.

Example 2. (Spectral Cut-off) The spectral cut-off or truncated singular value

decomposition has a filter function gλ with a parameter λ > 0 given by

gλ(σ) =

{

1
σ
, if σ ≥ λ,

0, if σ < λ.

Here the filter function gλ eliminates the eigenvalues of LK,D in the spectrum interval

[0, λ) and maps those eigenvalues σx

i on [λ, κ2] to their reciprocals 1
σx

i
. So the operator

gλ(LK,D) is given by spectral calculus as gλ(LK,D) =
∑

i:σx

i ≥λ
1

σx

i
〈·, φx

i 〉Kφx

i , and it

provides an approximate inverse of LK,D when the truncation parameter λ is small.

We may regard the least squares minimization problem (2) in Example 1 as a

Tikhonov regularization solution [8] to an ill-posed linear inverse problem with noisy

data D = {(xi, yi)}N
i=1. Both of the output and input have noise. The data-free limit of

(2) takes the form

fλ = arg min
f∈HK

{

‖f − fρ‖2
ρ + λ‖f‖2

K

}

.

If we use the inclusion operator Sρ : HK → L2
ρX

defined by Sρ(f)(x) = f(x) = 〈f, Kx〉K ,

then we know that fλ =
(

ST
ρ Sρ + λI

)−1
ST

ρ fρ. But ST
ρ (h) =

∫

X h(x)KxdρX . So

ST
ρ Sρ(f) = LK(f). Since LK is a compact positive operator on HK , LK +λI is invertible

for any λ > 0. When fρ ∈ HK , we have fλ = (LK + λI)−1LK(fρ), the data-free limit

of (1) given by gλ(LK)LK(fρ) with gλ(σ) = 1
λ+σ

. This expression for the data-free limit

hints the so-called saturation phenomenon [12, 21] for the regularized least squares

algorithm: its learning rate O(N− 2r
2r+β ), stated with a complexity parameter β > 0

and a regularity parameter r > 0 given in (8) and (6) below, is saturated at r = 1

and ceases to improve when the regularity of the regression function goes beyond as

r > 1. Some other members in the family of spectral algorithms may have improved

learning rates together with some other advantages in solving various learning tasks.

For example, the Landweber iteration [12] (or gradient descent [21]), with the filter

function gλ(σ) =
∑t−1

i=1(1 − σ)i parameterized by λ = 1
t

for an integer t ∈ N, can

have improved learning rates, from O(N− 2
2+β ) to O(N− 2r

2r+β ) with arbitrary r > 1. A

corresponding parameter for a general spectral algorithm, threshold for improvements of

learning rates, is called the qualification νg > 0 (to be defined below) which can even be

infinity (for spectral cut-off). Deriving learning rates of spectral algorithm (1) requires
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rigorous analysis for the approximation of (LK + λI)−1 by (LK,D + λI)−1, which is key

in our study.

The spectral algorithms (1) are implemented by spectral calculus of the empirical

integral operator LK,D or singular value decompositions of the Gramian matrix

(K(xi, xj))
N
i,j=1. When the data set D comes distributively or has a very large sample

size N , it is natural for us to consider distributed learning with spectral algorithms. Let

D = ∪m
j=1Dj be a disjoint union of data subsets Dj. The distributed learning algorithms

studied in this paper take the form of a weighted average of the output functions {fDj ,λ}
produced by the spectral algorithms (1) implemented on individual data subsets {Dj}
as

fD,λ =
m
∑

j=1

|Dj|
|D| fDj ,λ =

m
∑

j=1

|Dj|
|D| gλ(LK,Dj

)
1

|Dj |
∑

(x,y)∈Dj

yKx. (3)

In the special case with gλ(σ) = 1
σ+λ

, (3) coincides with the algorithm of distributed

learning with regularized least squares considered in [23, 11].

The main purpose of this paper is to derive optimal learning rates for the distributed

spectral algorithms (3) by a novel integral operator method. We shall show that the

distributed spectral algorithms (3) can achieve the same learning rates as the spectral

algorithms (1) (acting on the whole data set), provided |Dj| is not too small for each

Dj .

2. Main Results

In this section, we present optimal learning rates of the distributed spectral algorithms

(3). These learning rates are stated in terms of the regularity of the regression function,

the complexity of the RKHS, and the qualification of the filter function, a characteristic

of a spectral algorithm making our analysis essentially different from the previous work

for the regularized least squares in [23, 11].

2.1. Filter function and examples of spectral algorithms

The learning performance of a spectral algorithm depends on its filter function gλ with

qualification νg ≥ 1
2

defined as follows.

Definition 1. We say that gλ : [0, κ2] → R, with 0 < λ ≤ κ2, is a filter function

with qualification νg ≥ 1
2

if there exists a positive constant b independent of λ such that

sup
0<σ≤κ2

|gλ(σ)| ≤ b

λ
, sup

0<σ≤κ2

|gλ(σ)σ| ≤ b, (4)

and

sup
0<σ≤κ2

|1 − gλ(σ)σ|σν ≤ γνλ
ν , ∀ 0 < ν ≤ νg, (5)

where γν > 0 is a constant depending only on ν ∈ (0, νg].
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In Examples 1 and 2, we may take the constants as b = 1, γν = 1, while the

qualification is νg = 1 for Tikhonov Regularization and νg = ∞ for spectral cut-off.

Below are some other examples of spectral algorithms with different filter functions.

Example 3. (Landweber Iteration) If gλ(σ) =
∑t−1

i=0(1 − σ)i with λ = 1
t

for

some t ∈ N, then algorithm (1) corresponds to the Landweber iteration or gradient

descent algorithm. For this filter function, we have b = 1 and the qualification νg is

infinite. The constant γν equals 1 if ν ∈ (0, 1] and νν if ν > 1.

Example 4. (Accelerated Landweber Iteration) Accelerated Landweber

iteration or semi-iterative regularization can be regarded as a generalization of the

Landweber iteration where the filter function is defined as gλ(σ) = pt(σ) with λ = t−2,

t ∈ N, and pt a polynomial of degree t − 1. Here b = 2 and the qualification is usually

finite [8]. A special case of the accelerated Landweber iteration is the ν method. We

refer the readers to [12, 8, 2] and references therein for more details about the ν method

and accelerated Landweber iteration.

2.2. Optimal minimax rates of distributed spectral algorithms

Our error bounds for the distributed spectral algorithms are based on the following

regularity condition

fρ = Lr
K(uρ) for some r > 0 and uρ ∈ L2

ρX
, (6)

where Lr
K denotes the r-th power of LK on L2

ρ
X

since LK : L2
ρX

→ L2
ρX

is a compact

and positive operator.

We shall use the effective dimension N (λ) to measure the complexity of HK with

respect to ρX , which is defined to be the trace of the operator (λI + LK)−1LK , that is

N (λ) = Tr((λI + LK)−1LK), λ > 0.

Throughout the paper we assume that for some constant M > 0, |y| ≤ M almost

surely. Our analysis can be extended to more general situations by assuming some

exponential decay or moment conditions [4].

In Section 6, we shall prove the following error bounds in expectation for the

distributed spectral algorithms (3). Recall that D = ∪m
j=1Dj is a disjoint union of

data subsets Dj.

Theorem 1. If the regularity condition (6) holds with 1/2 ≤ r ≤ νg, then there

exists a constant C̃ independent of m or |Dj| such that for 1/2 ≤ r ≤ min{3/2, νg},

E[‖fD,λ − fρ‖2
ρ] ≤ C̃

m
∑

j=1

|Dj |
|D|

[

(B|Dj |,λ√
λ

)2

+ 1

]max{2,2r}
( |Dj|

|D| B
2
|Dj |,λ + λ2r

)

,

and for 3/2 < r ≤ νg,

E[‖fD,λ − fρ‖2
ρ]

≤ C̃

m
∑

j=1

|Dj|
|D|

[

(B|Dj |,λ√
λ

)2

+ 1

]3
( |Dj|

|D| B
2
|Dj |,λ +

λ

|D| + λ2r + λ2B2
|Dj |,λ +

λ3

|Dj |

)

.
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Here B|Dj |,λ is a quantity defined by

B|Dj |,λ =
2κ

√

|Dj|

{

κ
√

|Dj|λ
+
√

N (λ)

}

. (7)

To obtain explicit learning rates, we need to quantify the effective dimension N (λ)

with a parameter 0 < β ≤ 1 and a constant C0 > 0 as

N (λ) ≤ C0λ
−β, ∀λ > 0. (8)

The condition (8) with β = 1 is always satisfied by taking the constant C0 =

Tr(LK) ≤ κ2.

For 0 < β < 1, the condition (8) is slightly more general than the eigenvalue

decaying assumption in the literature (e.g. [4]). Indeed, let {(λℓ, φℓ)}ℓ be a set of

normalized eigenpairs of LK on HK with {φℓ}∞ℓ=1 forming an orthonormal basis of HK ,

and let

LK =
∞
∑

ℓ=1

λℓ〈·, φℓ〉Kφℓ

be the spectral decomposition. If λn ≤ c0n
−1/β for some 0 < β < 1 and c0 ≥ 1, then

N (λ) =
∞
∑

ℓ=1

λℓ

λ + λℓ

≤
∞
∑

ℓ=1

c0ℓ
−1/β

λ + c0ℓ−1/β
=

∞
∑

ℓ=1

c0

c0 + λℓ1/β

≤
∫ ∞

0

c0

c0 + λt1/β
dt = O(λ−β).

If the condition (8) for the effective dimension is imposed, then we can derive the

following learning rates of the distributed spectral algorithms (3) to be proved in Section

6.

Corollary 1. Assume the regularity condition (6) with 1/2 ≤ r ≤ νg. If (8) holds

with 0 < β ≤ 1, |D1| = |D2| = . . . = |Dm|, λ = N− 1
2r+β , and

m ≤ Nmin{ 2
2r+β

, 2r−1
2r+β}, (9)

then

E[‖fD,λ − fρ‖2
ρ] = O

(

N− 2r
2r+β

)

. (10)

Our error analysis for the distributed spectral algorithms (3) is carried out by

making some improvements of existing methods and results [2, 12, 7] on spectral

algorithms (1). As a by-product, we shall prove in Section 5 the following error estimates

for ‖fD,λ − fρ‖ρ concerning the classical spectral algorithms (1).

Theorem 2. If the regularity condition (6) holds with 1/2 ≤ r ≤ νg, then for any

δ ∈ (0, 1), with confidence at least 1 − δ, ‖fD,λ − fρ‖ρ is bounded by














C

(

(

B|D|,λ√
λ

)2

+ 1

)max{1,r}
(

B|D|,λ + λr
)

(log 4
δ
)4, if 1

2
≤ r ≤ min

{

3
2
, νg

}

,

C

(

(

B|D|,λ√
λ

)2

+ 1

)(

B|D|,λ +
(

λ
|D|

)
1
2

+ λr

)

(log 6
δ
)3, if 3

2
< r ≤ νg,
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where C is a constant independent of |D| or δ. If (8) holds with 0 < β ≤ 1 and

λ = N− 1
2r+β , then for any 0 < δ < 1, with confidence at least 1 − δ, we have

‖fD,λ − fρ‖ρ ≤ C̃N− r
2r+β (log 6/δ)4 , (11)

where C̃ is a constat independent of N or δ. Moreover,

E
[

‖fD,λ − fρ‖2
ρ

]

= O
(

N− 2r
2r+β

)

. (12)

To facilitate the use of the distributed spectral algorithms in practice, we discuss

the important issue of parameter selection by the strategy of cross-validation in two

situations.

The first situation is when the data are stored naturally across multiple servers in

a distributive way. This happens in some practical applications in medicine, finance,

business, and some other areas, and the data are not combined for reasons of protecting

privacy or avoiding high costs. In such a circumstance, the number of data subsets m is

fixed. We propose a cross-validation approach for selecting the regularization parameter

λ for the distributed spectral algorithms, as done for the regularized least squares in [5].

Without loss of generality, we assume that each data subset Dj has an even sample size

and is the disjoint union of two subsets, D1
j (the training set) and D2

j (the validation

set), of equal cardinality |D1
j | = |D2

j | = |Dj |/2. Let Λ be a set of positive parameters.

We use the training data subsets {D1
j}m

j=1 and the distributed spectral algorithm to get

a set of estimators {fD1,λ}λ∈Λ with D1 = ∪m
j=1D

1
j , and then utilize the validation subsets

{D2
j}m

j=1 to select an optimal parameter λ∗ by

λ∗ = arg min
λ∈Λ

1

m

m
∑

j=1

1

|D2
j |

∑

z=(x,y)∈D2
j

(

fD1,λ(x) − y
)2

. (13)

The final estimator is fD1,λ∗ . Some theoretical analysis for the cross-validation strategy

can be found in [5, Theorem 3].

The other situation we consider for parameter selection in distributed learning is

when the divide-and-conquer approach is used to reduce the computational complexity

and memory requirements. Here there exist two parameters in the distributed spectral

algorithm: the number of data subsets m and the regularization parameter λ. We

assume that the data set D has size |D| = 2n for some n ∈ N. We choose

1 ≤ kmin ≤ kmax ≤ n, take m = 2k with k ∈ Kindex := {kmin, kmin + 1, . . . , kmax},
and divide the data set D into m = 2k disjoint data subsets {Dj,k}2k

j=1 of size 2n−k. Here

the integer kmin is chosen according to the processing ability (for data sets of size at most

2n−kmin) of the local processors and kmax is set according to the size requirement (at

least 2n−kmax) of data subsets in the local processors. By dividing each data subset Dj,k

into the disjoint union of two subsets D1
j,k and D2

j,k of equal cardinality, and applying the

distributed spectral algorithm to the training data subsets {D1
j,k}m

j=1 and λ ∈ Λ, we get

a set of estimators {fD1
·,k,λ}λ∈Λ with D1

·,k = ∪2k

j=1D
1
j,k. Then we can use the validation
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subsets {D2
j,k}2k

j=1 to select the optimal parameter pair (k∗, λ∗) by

(k∗, λ∗) = arg min(k,λ)∈Kindex×Λ

1

2n−1

2k
∑

j=1

∑

z=(x,y)∈D2
j,k

(

fD1
·,k,λ(x) − y

)2

. (14)

This yields the final estimator fD1
·,k∗

,λ∗ . The computational cost of the above procedure

is in the order of O
(

∑

λ∈Λ

∑kmax

k=kmin

(

2n−k
)3
)

= O
(

|D|32−3kmin |Λ|
)

. However, for each

choice of k, a procedure of re-partition and re-communication of the data set would be

required, which would significantly hinders the use of the proposed distributed spectral

algorithms. To the best of our knowledge, a feasible way to select m is to adjust it

manually. It is possible to select m manually via a few trails, since (9) yields optimal

rates for distributed spectral algorithms for m ≤ m0 with the largest number of data

subsets m0 depending on r and β (which is difficult to determine in practice). It would

be interesting to develop other efficient data-driven parameter selection strategies for

distributed spectral algorithms (even for the well known distributed regularized least

squares [23]) which can be rigorously justified in theory.

3. Related Work and Discussion

The study of spectral algorithms (1) has a long history in the literature of inverse

problems [8]. The generalization performance of these algorithms have been investigated

in the learning theory literature [12, 2, 5]. Let us mention some explicit results related

to this paper and demonstrate the slight improvement of our learning rates (12) for

the spectral algorithms (1) by removing a logarithmic factor from the existing results.

Note that the learning rates (12) coincide with the minimax lower bound proved in [4,

Theorem 3], and are optimal.

When the regularity condition (6) holds with 1/2 ≤ r ≤ νg, it was proved in [2,

Corollary 17] that for

N >

(

2
√

2κ2 log
4

δ

)
4r+2
2r+3

, (15)

with confidence at least 1 − δ,

‖fD,λ − fρ‖ρ ≤ CN− r
2r+1 log

4

δ
, (16)

where C is a constant independent of δ or N . Let PN,δ be the event that (15) holds.

Then it follows from the definition of expectation that

E[‖fD,λ − fρ‖2
ρ] ≤ E[‖fD,λ − fρ‖2

ρ|PN,δ] + [‖fD,λ − fρ‖2
ρ|PT

N,δ], (17)

where PT
N,δ denotes the event that (15) does not hold. Plugging (16) with sufficiently

small δ (δ = N−2 for example) into (17), we obtain

E[‖fD,λ − fρ‖2
ρ] = O

(

N− 2r
2r+1 log N

)

.
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This learning rate is almost optimal, but the extra term log N makes it suboptimal. This

extra logarithmic term arises since the confidence-based error bound O
(

N− r
2r+1 log 4

δ

)

holds only when N is large enough satisfying the restriction (15). Recall that the

complexity condition (8) is always satisfied with the universal parameter β = 1. Our

derived learning rates (12) with this universal parameter choice β = 1 in (8) remove the

logarithmic term and make the learning rates optimal.

The learning rates in [2] are derived with the worse but universal parameter β = 1 in

the complexity condition (8), no matter how smooth the kernel K is. This phenomenon

was observed in [5] where learning rates of spectral algorithms (1) with a possibly

smaller parameter β ∈ (0, 1] in the complexity assumption (8) were provided. Under

the conditions (6) and (8), it was proved in [5, Theorem 2] that for

λ =

(

4C2 log 6
δ

N

)

1
2r+β

and 2r + β ≥ 2, with confidence at least 1 − δ, there holds

‖fD,λ − fρ‖2
ρ ≤ C3N

− 2r
2r+β

(

log
6

δ

)
r

2r+β

,

where C2 and C3 are constants independent of δ or N . Again, this learning rate is

suboptimal since the optimal regularization parameter depends on the confidence level

δ. Furthermore, when 2r + β < 2, the result in [5] needs additional semi-supervised

samples. Our derived learning rates (12) remove the restriction 2r + β ≥ 2 and provide

the optimal minimax learning rates with λ independent of δ.

Distributed learning is a recent development for handling big data [13, 15, 22]. The

existing rigorous error analysis of distributed learning algorithms in the framework of

learning theory (or nonparametric regression) was originally given in [23] for the kernel-

based regularized least squares, the special case of the spectral algorithms (1) with the

filter function gλ(σ) = (σ + λ)−1. To demonstrate the essential difference between our

analysis in this paper and that in [23], we state a key assumption made in [23] on the

normalized eigenfunctions {φi}i of the integral operator LK that for some constants

2 < k ≤ ∞ and A < ∞, there holds










supλi>0 E

[

∣

∣

∣

φi(x)√
λi

∣

∣

∣

2k
]

≤ A2k, when k < ∞,

supλi>0

∥

∥

∥

φi(x)√
λi

∥

∥

∥

∞
≤ A, when k = ∞.

(18)

Under this key assumption, for the distributed kernel-based regularized least squares

with {Dj}m
j=1 of equal size, the learning rate E

[

∥

∥fD,λ − fρ

∥

∥

2

ρ

]

= O
(

N− 1
β+1

)

with

0 < β < 1 was derived in [23] when fρ ∈ HK , λi = O
(

i−1/β
)

, λ = N− 1
β+1 and

m =



















O
(

(

N
(k−4)−kβ

β+1

A4k logk N

)
1

k−2

)

, when k < ∞,

O
(

N
1−β
β+1

A4 log N

)

, when k = ∞.

(19)
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It shows that, under the regularity condition (6) with r = 1
2
, distributed kernel-

based regularized least squares can achieve the optimal learning rate provided that

m satisfies (19) and (18) is valid. This result was proved by a matrix analysis approach

and the eigenfunction assumption (18) played an important role. There are three

differences between our results in this paper and those in [23]. Besides the broader

range of our results for the whole family of distributed spectral algorithms and the more

general regularity condition (6) with r ≥ 1
2
, our analysis does not require the essential

eigenfunction assumption (18).

Remark. To illustrate our novelty further, we remark that the eigenfunction

assumption (18) for the integral operator LK = LK,ρX
associated with the pair (K, ρX)

could be difficult to verify. Besides the case of finite dimensional RKHSs, in the

existing literature, there are only these classes of pairs (K, ρX) with this eigenfunction

assumption rigorously verified: the Sobolev reproducing kernels on Euclidean domains

with normalized Lebesgue measures [19], periodical kernels [20], and kernels artificially

constructed by a Mercer type expansion

K(x, y) =
∑

i

λi
φi(x)√

λi

φi(y)√
λi

, (20)

where {φi(x)√
λi
}i is a given orthonormal system in L2

ρX
. To demonstrate the complexity

of the eigenfunction assumption (18) as the marginal distribution ρX changes, take

a different probability measure µ induced by a nonnegative function P ∈ L2
ρX

as

dµ = P (x)dρX . By expanding φ =
∑

i∈I
ci√
λi

φi in terms of the orthonormal basis

{φi}i∈I of HK where I := {i : λi > 0}, we can see [11] that for λ0 > 0,

LK,µφ = λ0φ ⇐⇒ K
P c = λ0c,

where c = (ci)i∈I and K
P is a possibly infinite matrix given by

K
P =

(

λi

∫

X

φi(x)√
λi

P (x)
φj(x)
√

λj

dρX

)

i,j∈I

. (21)

Hence the eigenpairs of the integral operator LK,µ associated with (K, µ) can be

characterized by those of the matrix K
P defined by (21). Checking an eigenvector

condition for the possibly infinite matrix K
P corresponding to the eigenfunction

assumption (18) is a challenging question involving multiplier operators in harmonic

analysis. The matrix K
P is not diagonal in general, except the case when µ = ρX and

P ≡ 1. Moreover, an example of a C∞ Mercer kernel was presented in [24] to show that

only the smoothness of the Mercer kernel does not guarantee the uniform boundedness of

the eigenfunctions {φi(x)√
λi
}i. Until now, it is even unknown whether any of the Gaussian

kernels on X = [0, 1]d satisfies the eigenfunction assumption (18) when ρX is a general

Borel measure.

Note that the condition (9) on the number m of local processors is more restrictive

than (19) imposed in [23] for the special case of regularized least squares and r = 1/2.

But a main advantage of our results is to remove the eigenfunction assumption (18)
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which was key in [23] to get less restrictions on m. It is a great challenge to derive

the optimal learning rates under the conditions imposed in this paper, without the

eigenfunction assumption (18), but with less demanding restriction (19) on m. Our

analysis is achieved by the novelty of using the integral operator approach and second

order decomposition of a difference of operator inverses. Similar analysis was carried out

in our recent work [11] for the special algorithm of distributed regularized least squares.

In this paper we are concerned with distributed learning with the general spectral

algorithms (1) rather than the regularized least squares. It has not been considered

in the literature, to our best knowledge. One of the advantages of distributing learning

with general spectral algorithms such as the spectral cut-off and Landweber iteration is

that the saturation of the distributed regularized least squares, stated by the restriction

r ≤ 1, is overcome and faster learning rates with r > 1 can be achieved. Corollary 1

shows that, if the number m of local machines is not too large, then the learning rates

of the distributed spectral algorithm (3) and the spectral algorithm (1) implemented on

a “big” machine with the whole data set are identical.

Comparing Corollary 1 with Theorem 2, we find the regularization parameters λ

for achieving the optimal learning rates are identical. Even though each local machine

accesses to only 1/m of the whole data, it is nonetheless essential to regularize as

we process the whole data set, which would lead to overfitting in local machines.

However, the m-fold weighted average reduces the variance and enables algorithm (3) to

achieve optimal learning rates. Though we are interested in using the general spectral

algorithms, other than the regularized least squares, mainly in the case r > 1 (at least for

overcoming the saturation) when the restriction (9), with the power exponent involving
2r−1
2r+β

, makes more sense, it would be interesting to relax the restriction (9) by other

approaches.

After the submission of this paper in January 2016, we found that similar analysis

was independently carried out for spectral algorithms by L. H. Dicker, D. P. Foster,

and D. Hsu in a paper entitled “Kernel ridge vs. principal component regression:

minimax bounds and adaptibility of regularization operators” (arXiv:1605.08839, May

2016) and for spectral algorithms and distributed spectral algorithms by G. Blanchard

and N. Mücke in a paper entitled “Parallel spectral algorithms for kernel learning”

(arXiv:1610.07487, October 2016).

4. Second Order Decomposition for Bounding Norms

Our error analysis is based on a combination of an integral operator approach [4, 18],

a recently developed technique [11] of second order decomposition of inverse operator

differences, and a novel idea for bounding operator products developed below in this

paper. The core of the integral operator method is to analyze similarities between the

empirical integral operator LK,D and its data-free limit LK , since convergence rates

of corresponding schemes associated with LK are easier to derive. Taking spectral
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algorithms for example, the data-free limit of algorithms (1) is

fλ = gλ(LK)LKfρ.

According to the definition of the filter function and conditions (6), if r ≤ νg, we see

from the identity ‖f‖ρ = ‖L1/2
K f‖K for f ∈ HK that

‖fλ − fρ‖ρ ≤ ‖L1/2
K (gλ(LK)LK − I)L

r−1/2
K ‖‖L1/2

K uρ‖K ≤ γrλ
r‖uρ‖ρ. (22)

The classical method to analyze similarities between LK and LK,D is to bound the

norm of operator difference LK−LK,D. We refer the readers to [2, 4, 5, 7, 10, 11, 18, 21, 9]

for details on this method. In particular, it can be found in [4, 21] and [11] that for any

δ ∈ (0, 1), with confidence at least 1 − δ, there holds

‖LK − LK,D‖ ≤ 4κ2

√

|D|
log

2

δ
, (23)

and

‖(λI + LK)−1/2(LK − LK,D)‖ ≤ B|D|,λ log
2

δ
, (24)

where B|D|,λ is defined by (7).

In our error decomposition for spectral algorithms, given in Proposition 2 below, we

use the norms of the product operators (LK+λI)(LK,D+λ)−1 and (LK,D+λI)(LK+λI)−1

which also reflect similarities between LK and LK,D, as seen from equation (26) below.

In this section, we present tight bounds of the product norms by using the second order

decomposition of operator differences. This is the first novelty of our error analysis

carried out in this paper.

Let A and B be invertible operators on a Banach space. The first order

decomposition of operator differences is

A−1 − B−1 = A−1(B − A)B−1 = B−1(B − A)A−1. (25)

It follows that

A−1B = (A−1 − B−1)B + I = A−1(B − A) + I. (26)

Let A = LK + λI and B = LK,D + λI. We see from (26) that

‖(LK + λI)−1(LK,D + λI)‖ ≤ ‖(LK + λI)−1/2‖‖(LK + λI)−1/2(LK,D − LK)‖ + 1.

Since ‖(λI + LK)−1/2‖ ≤ 1/
√

λ, it follows from (24) that with confidence at least 1− δ,

there holds

‖(LK + λI)−1(LK,D + λI)‖ ≤ B|D|,λ√
λ

log
2

δ
+ 1. (27)

To bound the norm of (LK +λI)(LK,D +λI)−1, the first order decomposition (25) is

not sufficient due to the lack of an appropriate bound for ‖(LK,D +λI)−1/2(LK,D−LK)‖.
We need to decompose A−1 = A−1−B−1 +B−1 in (25) further. This is the second order

decomposition of operator difference, which was introduced in [11] to derive optimal
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learning rates of the regularized least squares. It asserts that if A and B are invertible

operators on a Banach space, then (25) yields

A−1 − B−1 = B−1(B − A)A−1(B − A)B−1 + B−1(B − A)B−1

= B−1(B − A)B−1(B − A)A−1 + B−1(B − A)B−1. (28)

This implies the following decomposition of the operator product

BA−1 = (B − A)B−1(B − A)A−1 + (B − A)B−1 + I. (29)

Inserting A = LK,D +λI and B = LK +λI to (29), we obtain the following upper bound

for ‖(LK + λI)(LK,D + λI)−1‖.
Proposition 1. For any 0 < δ < 1, with confidence at least 1 − δ, there holds

‖(LK + λI)(LK,D + λI)−1‖ ≤ 2

[

(B|D|,λ log 2
δ√

λ

)2

+ 1

]

.

Proof. We apply (29) to the operator A = LK,D +λI and B = LK +λI. Applying

the bounds ‖(λI + LK,D)−1‖ ≤ 1/λ and ‖(λI + LK)−1/2‖ ≤ 1/
√

λ gives

‖(λI + LK)(λI + LK,D)−1‖ ≤ ‖(λI + LK)−1/2(LK − LK,D)‖2λ−1

+ ‖(λI + LK)−1/2(LK − LK,D)‖λ−1/2 + 1.

Here we have used the fact that

‖L1L2‖ = ‖(L1L2)
T‖ = ‖LT

2 LT
1 ‖ = ‖L2L1‖

for any self-adjoint operators L1, L2 on Hilbert spaces. Applying (24) yields

‖(λI + LK)(λI + LK,D)−1‖ ≤
(B|D|,λ log 2

δ√
λ

)2

+

(B|D|,λ log 2
δ√

λ

)

+ 1

≤ 2

[

(B|D|,λ log 2
δ√

λ

)2

+ 1

]

,

which proves our result. �

An upper bound of ‖(λI + LK)1/2(λI + LK,D)−1/2‖ was presented in [3], as Lemma

A.5, asserting that if

‖(LK + λI)−1/2(LK,D − LK)(LK + λI)−1/2‖ < 1 − η (30)

for some 0 < η < 1, then

‖(λI + LK)1/2(λI + LK,D)−1/2‖ ≤ 1√
η
.

The condition (30) with 0 < η < 1 requires the sample size N to be large enough. As

discussed in Section 3, this restriction imposes a logarithmic term in error estimates,

which makes the obtained learning rates suboptimal. We encourage the readers to

compare our Proposition 1 with Lemma A.5 of [3]. The operator product norm estimates

in Proposition 1 plays a crucial role in our integral operator approach. In particular,

based on the estimate of ‖(λI+LK)(λI+LK,D)−1‖, we present a new error decomposition

technique for spectral algorithms in the next section.
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5. Deriving Error Bounds for Spectral Algorithms

To analyze the spectral algorithms (1), we introduce a new error decomposition

technique, the second novelty of our error analysis. Since we do not impose any

additional Lipschitz conditions to the filter function gλ, it is not easy to bound the

difference between fD,λ and fλ. We turn to bounding the difference between fD,λ and

its semi-population version E∗[fD,λ], where

E∗[fD,λ] = E[fD,λ|x1, . . . , xN ]

denotes the conditional expectation of fD,λ given x1, . . . , xN . Since fρ = E∗[y], we then

have from (1) that

E∗[fD,λ] = gλ(LK,D)LK,Dfρ (31)

and the triangle inequality

‖fD,λ − fρ‖ρ ≤ ‖fD,λ − E∗[fD,λ]‖ρ + ‖E∗[fD,λ] − fρ‖ρ.

For the first part, since ‖L1/2
K (λI + LK)−1/2‖ ≤ 1, we have

‖fD,λ − E∗(fD,λ)‖ρ =
∥

∥

∥
L

1/2
K (fD,λ − E∗(fD,λ))

∥

∥

∥

K

≤
∥

∥(λI + LK)1/2(fD,λ − E∗(fD,λ))
∥

∥

K
.

Denote

∆D =
1

|D|
∑

(x,y)∈D

(y − fρ(x))Kx. (32)

It follows from the definition of fD,λ and the property (4) of the filter function that

‖fD,λ − E∗(fD,λ)‖ρ

≤
∥

∥(λI + LK)1/2(λI + LK,D)−1/2(λI + LK,D)1/2gλ(LK,D)∆D

∥

∥

K

≤ ‖(λI + LK)1/2(λI + LK,D)−1/2‖‖gλ(LK,D)(λI + LK,D)‖‖(λI + LK,D)−1/2

(λI + LK)1/2‖‖(λI + LK)−1/2∆D‖K

≤ 2b
∥

∥(λI + LK)1/2(λI + LK,D)−1/2
∥

∥

2 ∥
∥(λI + LK)−1/2∆D

∥

∥

K
.

For the second part, we have

‖E∗(fD,λ) − fρ‖ρ =
∥

∥

∥
L

1/2
K (gλ(LK,D)LK,D − I)fρ

∥

∥

∥

K

≤
∥

∥(λI + LK)1/2(gλ(LK,D)LK,D − I)fρ

∥

∥

K

≤
∥

∥(λI + LK)1/2(λI + LK,D)−1/2
∥

∥

∥

∥(λI + LK,D)1/2(gλ(LK,D)LK,D − I)fρ

∥

∥

K
.

All the above discussion yields the following error decomposition for the spectral

algorithms.

Proposition 2. Let ∆D be defined by (32). Then we have

‖fD,λ − fρ‖ρ ≤ I1 + I2,
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where

I1 = 2b
∥

∥(λI + LK)1/2(λI + LK,D)−1/2
∥

∥

2 ∥
∥(λI + LK)−1/2∆D

∥

∥

K
,

I2 =
∥

∥(λI + LK)1/2(λI + LK,D)−1/2
∥

∥

∥

∥(λI + LK,D)1/2(gλ(LK,D)LK,D − I)fρ

∥

∥

K
.

The error decomposition presented in Proposition 2 is different from that in [2]

or [5]. In fact, it can be found in Equation (26) of [2] that the difference LK − LK,D

rather than the operator product (LK +λI)(LK,D +λI)−1 is used to analyze similarities

between LK and LK,D. The error analysis in [5] needs an additional truncated function

f tr
λ = Pλfρ,

where Pλ is the orthogonal projector in L2
ρX

defined by

Pλ = Θλ(LK),

with Θλ(σ) = 1 for σ ≥ λ and Θλ(σ) = 0 for σ < λ. Our error decomposition does not

require such a truncated function and uses the operator product to analyze similarities

between LK and LK,D.

Based on the new error decomposition technique presented in Proposition 2, we

should bound three terms:
∥

∥(λI + LK)1/2(λI + LK,D)−1/2
∥

∥ ,
∥

∥(λI + LK)−1/2∆D

∥

∥

K
, and

∥

∥(λI + LK,D)1/2(gλ(LK,D)LK,D − I)fρ

∥

∥

K
. To bound the first term, we need Proposition

1 and the following lemma about norm estimates for products of powers of two positive

operators. It was proved in [1, Theorem IX.2.1-2] for positive definite matrices and then

provided in [3, Lemma A.7] for positive operators on Hilbert spaces.

Lemma 1. Let s ∈ [0, 1]. For positive operators A and B on a Hilbert space we

have

‖AsBs‖ ≤ ‖AB‖s. (33)

Applying the above lemma to A = λI + LK and B = (λI + LK,D)−1, we get from

Proposition 1 the following result.

Lemma 2. Let λ > 0, 0 ≤ s ≤ 1 and 0 < δ < 1. Then, with confidence at least

1 − δ, there holds

‖(λI + LK)s(λI + LK,D)−s‖ ≤ 2s

[

(B|D|,λ log 2
δ√

λ

)2

+ 1

]s

.

The second term
∥

∥(λI + LK)−1/2∆D

∥

∥

K
can be bounded by the following lemma

found in [3] or [4].

Lemma 3. Let δ ∈ (0, 1), and D be a sample drawn independently according to

ρ. If |y| ≤ M almost surely, then with confidence at least 1 − δ, there holds

‖(λI + LK)−1/2∆D‖K ≤ 2M

κ
B|D|,λ log

2

δ
.

To bound the third term
∥

∥(λI + LK,D)1/2(gλ(LK,D)LK,D − I)fρ

∥

∥

K
, we need the

following two lemmas. The first one can be found in [3, Lemma A.6], and the second

one is derived from properties (4) and (5) of the filter function gλ.
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Lemma 4. For positive operators A and B on a Hilbert space with ‖A‖, ‖B‖ ≤ C
for some constant C > 0, we have for t ≥ 1,

‖At − Bt‖ ≤ tCt−1‖A − B‖. (34)

Lemma 5. For 0 < t ≤ νg, we have

‖(gλ(LK,D)LK,D − I)(λI + LK,D)t‖ ≤ 2t(b + 1 + γt)λ
t. (35)

Proof. Recall from the introduction that {(σx

i , φx

i )i} is a set of normalized

eigenpairs of LK,D with the eigenfunctions {φx

i }i forming an orthonormal basis of HK .

Then for each h ∈ HK , we have h =
∑〈h, φx

i 〉φx

i and ‖h‖2
K =

∑

i〈h, φx

i 〉2. Hence

‖(gλ(LK,D)LK,D − I)(λI + LK,D)th‖K

=

∥

∥

∥

∥

∥

∞
∑

i=1

〈h, φx

i 〉(gλ(σ
x

i )σx

i − 1)(λ + σx

i )tφx

i

∥

∥

∥

∥

∥

K

=

{ ∞
∑

i=1

[

〈h, φx

i 〉(gλ(σ
x

i )σx

i − 1)(λ + σx

i )t
]2

}1/2

≤
{ ∞
∑

i=1

[

|〈h, φx

i 〉||gλ(σ
x

i )σx

i − 1|2t(λt + (σx

i )t)
]2

}1/2

≤ 2t(b + 1 + γt)λ
t

{ ∞
∑

i=1

(〈h, φx

i 〉)2

}1/2

= 2t(b + 1 + γt)λ
t‖h‖K .

The last inequalities hold due to properties (4) and (5) of the filter function gλ and the

elementary inequality (c + d)t ≤ 2t(ct + dt) for any c, d, t ≥ 0. Then our result follows

from the definition of the operator norm on HK . �

Before presenting the proof of Theorem 2, we give the following proposition.

Proposition 3. Assume (6) holds with 1/2 ≤ r ≤ νg. If 1
2
≤ r ≤ 3/2, we have

‖fD,λ − fρ‖ρ ≤ 2bΞD‖(λI + LK)−1/2∆D‖K + 2r(b + 1 + γr)‖uρ‖ρλ
rΞr

D,

where

ΞD = ‖(λI + LK)(λI + LK,D)−1‖. (36)

If 3
2

< r ≤ νg, we have

‖fD,λ − fρ‖ρ ≤ 2bΞD‖(λI + LK)−1/2∆D‖K + Cb,r,κ‖uρ‖ρΞ
1/2
D (

√
λ‖LK − LK,D‖ + λr),

where Cb,r,κ is a constant depending only on b, r and κ.

Proof. We estimate the two parts I1 and I2 in Proposition 2. For I1, recall the

notation ΞD = ‖(λI + LK)(λI + LK,D)−1‖ and by Lemma 1 with s = 1/2, we have

I1 ≤ 2bΞD‖(λI + LK)−1/2∆D‖K .

Now we estimate

I2 =
∥

∥(λI + LK)1/2(λI + LK,D)−1/2
∥

∥

∥

∥(λI + LK,D)1/2(gλ(LK,D)LK,D − I)fρ

∥

∥

K

≤ Ξ
1/2
D

∥

∥(λI + LK,D)1/2(gλ(LK,D)LK,D − I)fρ

∥

∥

K
. (37)
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The regularity condition (6) with 1/2 ≤ r ≤ νg means fρ = Lr
Kuρ for some uρ ∈ L2

ρX
.

To estimate the term
∥

∥(λI + LK,D)1/2(gλ(LK,D)LK,D − I)fρ

∥

∥

K
, we consider two cases

according to different regularity levels as follows.

Case 1: If r ∈ [1/2, 3/2], we have
∥

∥(λI + LK,D)1/2(gλ(LK,D)LK,D − I)fρ

∥

∥

K

=
∥

∥

∥
(λI + LK,D)1/2(gλ(LK,D)LK,D − I)L

r−1/2
K L

1/2
K uρ

∥

∥

∥

K

= ‖(λI + LK,D)1/2(gλ(LK,D)LK,D − I)(λI + LK,D)r−1/2(λI + LK,D)−(r−1/2)

(λI + LK)r−1/2(λI + LK)−(r−1/2)L
r−1/2
K L

1/2
K uρ‖K

≤ ‖(gλ(LK,D)LK,D − I)(λI + LK,D)r‖Ξ
r−1/2
D ‖uρ‖ρ,

where the last inequality follows from Lemma 1 with s = r−1/2 ∈ [0, 1], and the bound

‖(λI + LK)−(r−1/2)L
r−1/2
K ‖ ≤ 1. Thus,

I2 ≤ ‖(gλ(LK,D)LK,D − I)(λI + LK,D)r‖Ξr
D‖uρ‖ρ.

Combining the above estimates and Lemma 5 with t = r yields

I2 ≤ 2r(b + 1 + γr)‖uρ‖ρλ
rΞr

D. (38)

Case 2: If r > 3/2, we decompose
∥

∥(λI + LK,D)1/2(gλ(LK,D)LK,D − I)fρ

∥

∥

K
as

‖(λI + LK,D)1/2(gλ(LK,D)LK,D − I)fρ‖K

= ‖(λI + LK,D)1/2(gλ(LK,D)LK,D − I)(LK)r−1/2L
1/2
K uρ‖K

≤ ‖(λI + LK,D)1/2(gλ(LK,D)LK,D − I)(LK)r−1/2‖‖uρ‖ρ. (39)

By adding and subtracting the operator (LK,D)r−1/2, we can continue the estimation as

‖(λI + LK,D)1/2(gλ(LK,D)LK,D − I)(LK)r−1/2‖
≤ ‖(λI + LK,D)1/2(gλ(LK,D)LK,D − I)((LK)r−1/2 − (LK,D)r−1/2)‖
+‖(λI + LK,D)1/2(gλ(LK,D)LK,D − I)(LK,D)r−1/2‖.

Since r > 3/2, applying Lemma 4 to A = LK and B = LK,D with t = r − 1/2 > 1, we

have

‖(LK)r−1/2 − (LK,D)r−1/2‖ ≤ (r − 1/2)κ2r−3‖LK − LK,D‖.
Combining this observation with the bound ‖(λI + LK,D)r−1/2(LK,D)r−1/2‖ ≤ 1, and

applying Lemma 5 with t = 1/2 or t = r, we know that

‖(λI + LK,D)1/2(gλ(LK,D)LK,D − I)(LK)r−1/2‖
≤ ‖(λI + LK,D)1/2 (gλ(LK,D)LK,D − I) ‖(r − 1/2)κ2r−3‖LK − LK,D‖

+ ‖(gλ(LK,D)LK,D − I)(λI + LK,D)r‖
≤ (b + 1 + γ 1

2
)(r − 1/2)κ2r−3

√
λ‖LK − LK,D‖ + 2r(b + 1 + γr)λ

r

≤ Cb,r,κ(
√

λ‖LK − LK,D‖ + λr),

where Cb,r,κ = (b + 1 + γ 1
2
)(r − 1/2)κ2r−3 + 2r(b + 1 + γr). Putting the above estimates

into inequality (39) yields our desired error bound. �
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Now we are in a position to prove Theorem 2.

Proof of Theorem 2. By Proposition 1, for δ ∈ (0, 1), there exists a subset Z |D|
δ,1

of Z |D| of measure at least 1 − δ such that

ΞD = ‖(λI + LK)(λI + LK,D)−1‖ ≤ 2

[

(B|D|,λ log 2
δ√

λ

)2

+ 1

]

, ∀D ∈ Z |D|
δ,1 .

By Lemma 3 there exists another subset Z |D|
δ,2 of Z |D| of measure at least 1− δ such that

‖(λI + LK)−1/2∆D‖K ≤ 2M

κ
B|D|,λ log

2

δ
, ∀D ∈ Z |D|

δ,2 .

According to (23), there exists a third subset Z |D|
δ,3 of Z |D| of measure at least 1− δ such

that

‖LK − LK,D‖ ≤ 4κ2 log 2
δ

√

|D|
, ∀D ∈ Z |D|

δ,3 .

Put the above observations into Proposition 3. When r ∈ [1
2
, 3

2
], we know that for

D ∈ Z |D|
δ,1

⋂Z |D|
δ,2 , there holds

‖fD,λ − fρ‖ρ ≤ 8Mb
κ

[

(

B|D|,λ log 2
δ√

λ

)2

+ 1

]

B|D|,λ log 2
δ

+4r(b + 1 + γr)‖uρ‖ρλ
r

[

(

B|D|,λ log 2
δ√

λ

)2

+ 1

]r

≤ C

[

(

B|D|,λ log 2
δ√

λ

)2

+ 1

]max{1,r}
(

B|D|,λ log 2
δ

+ λr
)

,

where C = 8Mb
κ

+4r(b+1+ γr)‖uρ‖ρ. Then our first desired bound is verified by scaling

2δ to δ.

When r > 3
2
, for D ∈ Z |D|

δ,1

⋂Z |D|
δ,2

⋂Z |D|
δ,3 , there holds

‖fD,λ − fρ‖ρ ≤
8Mb

κ

[

(B|D|,λ log 2
δ√

λ

)2

+ 1

]

B|D|,λ log
2

δ

+
√

2Cb,r,κ‖uρ‖ρ

[

(B|D|,λ log 2
δ√

λ

)2

+ 1

]
1
2
[

4κ2

(

λ

|D|

)
1
2

log
2

δ
+ λr

]

≤ C

[

(B|D|,λ log 2
δ√

λ

)2

+ 1

][

B|D|,λ log
2

δ
+

(

λ

|D|

)
1
2

log
2

δ
+ λr

]

,

where C = 8Mb
κ

+
√

2Cb,r,κ‖uρ‖ρ(4κ
2 + 1). Then we get our first desired bound for

‖fD,λ − fρ‖ρ by scaling 3δ to δ.

To prove the second desired bound, we notice from the condition N (λ) ≤ C0λ
−β,

and the choices 1/2 ≤ r ≤ νg and λ = N− 1
2r+β that B|D|,λ can be bounded as

B|D|,λ =
2κ√
N

{

κ√
Nλ

+
√

N (λ)

}

≤ 2(κ2 + κ
√

C0)N
− r

2r+β ,

and
(B|D|,λ√

λ

)2

+ 1 ≤ 4
(

κ2 + κ
√

C0

)2

+ 1.
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Putting the above observations into our first proved bound, we know that when

r ∈ [1
2
, 3

2
], with confidence at least 1 − δ, ‖fD,λ − fρ‖ρ is bounded by

C̃

[

4
(

κ2 + κ
√

C0

)2

+ 1

]max{1,r}
(2κ2 + 2κ

√

C0 + 1)N− r
2r+β (log

4

δ
)4

= C̃N− r
2r+β (log

4

δ
)4,

where C̃ = C
[

4
(

κ2 + κ
√

C0

)2
+ 1
]max{1,r}

(2κ2 + 2κ
√

C0 + 1).

When r > 3
2
, with confidence at least 1 − δ, ‖fD,λ − fρ‖ρ is bounded by

C

[

4
(

κ2 + κ
√

C0

)2

+ 1

]

[

(2κ2 + 2κ
√

C0 + 1)N− r
2r+β + N− 2r+β+1

2(2r+β)

]

(log
6

δ
)3

≤ C̃N− r
2r+β (log

6

δ
)3,

where C̃ = 2C
[

4
(

κ2 + κ
√

C0

)2
+ 1
]

(

κ2 + κ
√

C0 + 2
)

. This proves our second desired

bound (11) for ‖fD,λ − fρ‖ρ.

Finally, we apply the formula

E[ξ] =

∫ ∞

0

Prob[ξ > t]dt (40)

for nonnegative random variables to ξ = ‖fD,λ − fρ‖2
ρ and use the bound

Prob [ξ > t] = Prob
[

ξ
1
2 > t

1
2

]

≤ 6 exp
{

−C̃− 1
4 N

r
8r+4β t

1
8

}

derived from (11) for t > C̃ log 64N− r
2r+β . Then

E
[

‖fD,λ − fρ‖2
ρ

]

≤ C̃2 log 68N− 2r
2r+β + 6

∫ ∞

0

exp
{

−C̃− 1
4 N

r
8r+4β t

1
8

}

dt.

The second term equals 48C̃2N− 2r
2r+β

∫∞
0

u8−1 exp {−u} du. Due to
∫∞
0

ud−1 exp {−u} du =

Γ(d) for d > 0, we have

E[‖fD,λ − fρ‖2
ρ] ≤ (6Γ(9) + log 68)C̃2N− 2r

2r+β .

This completes the proof of Theorem 2. �

6. Proving Main Results for Distributed Algorithms

To present the proof, we need an error decomposition for the distributed spectral

algorithms (3).

Proposition 4. Let fD,λ be defined by (3). We have

E[‖fD,λ−fρ‖2
ρ] ≤

m
∑

j=1

|Dj|2
|D|2 E

[

‖fDj ,λ − fρ‖2
ρ

]

+
m
∑

j=1

|Dj |
|D|

∥

∥E[fDj ,λ] − fρ

∥

∥

2

ρ
.(41)
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Proof. Due to (3) and
∑m

j=1
|Dj |
|D| = 1, we have

‖fD,λ − fρ‖2
ρ =

∥

∥

∥

∥

∥

m
∑

j=1

|Dj|
|D| (fDj ,λ − fρ)

∥

∥

∥

∥

∥

2

ρ

=
m
∑

j=1

|Dj|2
|D|2 ‖fDj ,λ − fρ‖2

ρ +
m
∑

j=1

|Dj |
|D|

〈

fDj ,λ − fρ,
∑

k 6=j

|Dk|
|D| (fDk,λ − fρ)

〉

ρ

.

Taking expectations gives

E
[

‖fD,λ − fρ‖2
ρ

]

=

m
∑

j=1

|Dj|2
|D|2 E

[

‖fDj ,λ − fρ‖2
ρ

]

+

m
∑

j=1

|Dj|
|D|

〈

EDj
[fDj ,λ] − fρ, E[fD,λ] − fρ −

|Dj|
|D|

(

EDj
[fDj ,λ] − fρ

)

〉

ρ

.

But
m
∑

j=1

|Dj|
|D|

〈

EDj
[fDj ,λ] − fρ, E[fD,λ] − fρ

〉

ρ
= E

[

〈

fD,λ − fρ, E[fD,λ] − fρ

〉

ρ

]

=
∥

∥E[fD,λ] − fρ

∥

∥

2

ρ
.

So we know that E
[

‖fD,λ − fρ‖2
ρ

]

equals
m
∑

j=1

|Dj|2
|D|2 E

[

‖fDj ,λ − fρ‖2
ρ

]

−
m
∑

j=1

|Dj|2
|D|2

∥

∥E[fDj ,λ] − fρ

∥

∥

2

ρ
+
∥

∥E[fD,λ] − fρ

∥

∥

2

ρ
.

Furthermore, by the Schwartz inequality and
∑m

j=1
|Dj |
|D| = 1, we have

‖E[fD,λ]−fρ‖2
ρ =

∥

∥

∥

∥

∥

m
∑

j=1

|Dj |
|D|

(

E[fDj ,λ] − fρ

)

∥

∥

∥

∥

∥

2

ρ

≤
m
∑

j=1

|Dj|
|D|

∥

∥E[fDj ,λ] − fρ

∥

∥

2

ρ
.(42)

Then the desired bound follows. �

The estimate (42) for the general distributed spectral algorithms is worse than

that for the distributed regularized least squares presented in [23, 11], which leads to

the restriction (9) on the number m of local processors. It would be interesting to

improve this estimate, at least for some families of spectral algorithms by imposing

some conditions on the filter function gλ.

By using Proposition 4, we can now prove Theorem 1.

Proof of Theorem 1. We apply the bound (41) in Proposition 4.

The proof in the case 1
2
≤ r ≤ 3

2
is easy. We apply Theorem 2 to the data set Dj

with an arbitrarily fixed j = 1, 2, . . . , m, and with confidence at least 1 − δ,

‖fDj ,λ − fρ‖ρ ≤ C

[

(B|Dj |,λ√
λ

)2

+ 1

]max{1,r}
(

B|Dj |,λ + λr
)

(

log
4

δ

)4

.

Using (40), it is easy to derive

E
[

‖fDj ,λ − fρ‖2
ρ

]

≤ 4Γ(9)C2

[

(B|Dj |,λ√
λ

)2

+ 1

]max{2,2r}
(

B|Dj |,λ + λr
)2

.
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Then the first term in bound (41) can be estimated as
m
∑

j=1

|Dj|2
|D|2 E

[

‖fDj ,λ − fρ‖2
ρ

]

≤ 4Γ(9)C2

m
∑

j=1

|Dj |2
|D|2

[

(B|Dj |,λ√
λ

)2

+ 1

]max{2,2r}
(

B|Dj |,λ + λr
)2

. (43)

We turn to estimate the second term of (41). For each fixed j ∈ {1, 2, . . . , m}, by

Jensen’s inequality, we have

‖E[fDj ,λ] − fρ‖ρ ≤ E[‖E∗[fDj ,λ] − fρ‖ρ].

The proof of Proposition 2 and the bounds (37) and (38) tell us that

‖E∗[fDj ,λ] − fρ‖ρ ≤ 2r(b + 1 + γr)‖uρ‖ρλ
rΞr

Dj
.

It follows that

‖E[fDj ,λ] − fρ‖ρ ≤ 2r(b + 1 + γr)‖uρ‖ρλ
rE
[

Ξr
Dj

]

. (44)

Applying Proposition 1 to each fixed j ∈ {1, . . . , m}, with confidence at least 1 − δ,

there holds

ΞDj
≤ 2

[

(B|Dj |,λ log 2
δ√

λ

)2

+ 1

]

.

Use the expectation formula (40) for the nonnegative random variable ξ = Ξr
Dj

and

Prob[ξ > t] = Prob[ξ
1
r > t

1
r ] ≤ 2 exp

(

− λ1/2t
1
2r√

2(B2
|Dj |,λ + λ)1/2

)

.

We find

E
[

Ξr
Dj

]

≤ 2

∫ ∞

0

exp

(

− λ1/2t
1
2r√

2(B2
|Dj |,λ + λ)1/2

)

dt,

which equals

4r2r

[

(B|Dj |,λ√
λ

)2

+ 1

]r
∫ ∞

0

u2r−1 exp {−u} du.

Due to
∫∞
0

u2r−1 exp {−u} du = Γ(2r) we have

E
[

Ξr
Dj

]

≤ rΓ(2r)2r+2

[

(B|Dj |,λ√
λ

)2

+ 1

]r

.

Inserting the above estimate to (44), we have

‖E[fDj ,λ]−fρ‖ρ ≤ rΓ(2r)22r+2(b+1+γr)‖uρ‖ρλ
r

[

(B|Dj |,λ√
λ

)2

+ 1

]r

.(45)
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Combining (41), (43) and (45) we have

E[‖fD,λ − fρ‖2
ρ] ≤ 4Γ(9)C2

m
∑

j=1

|Dj|2
|D|2

[

(B|Dj |,λ√
λ

)2

+ 1

]max{2,2r}
(

B|Dj |,λ + λr
)2

+ r2Γ2(2r)(b + 1 + γr)
224r+4‖uρ‖2

ρλ
2r

m
∑

j=1

|Dj|
|D|

[

(B|Dj |,λ√
λ

)2

+ 1

]2r

.

This proves the desired bound in the case 1/2 ≤ r ≤ 3/2.

The proof in the case r > 3/2 is more involved. Again we first use Theorem 2 to

bound E[‖fDj ,λ − fρ‖2
ρ] and obtain

m
∑

j=1

|Dj|2
|D|2 E

[

‖fDj ,λ − fρ‖2
ρ

]

≤ 6Γ(7)C2
m
∑

j=1

|Dj |2
|D|2

[

(B|Dj |,λ√
λ

)2

+ 1

]2 [

B|Dj |,λ +

(

λ

|Dj|

)
1
2

+ λr

]2

. (46)

Then we estimate

‖E[fDj ,λ] − fρ‖ρ ≤ E‖E∗[fDj ,λ] − fρ‖ρ

for each fixed j as in the proof of Proposition 3 to have

‖E∗[fDj ,λ] − fρ‖ρ ≤ Ξ
1
2
Dj

∥

∥

∥
(λI + LK,Dj

)
1
2 (gλ(LK,Dj

)LK,Dj
− I)L

r− 1
2

K

∥

∥

∥
‖uρ‖ρ

≤ Ξ
1
2
Dj
‖(gλ(LK,Dj

)LK,Dj
− I)(LK,Dj

+ λI)r‖‖uρ‖ρ + Ξ
1
2
Dj
‖uρ‖ρ

‖(LK,Dj
+ λI)1/2(gλ(LK,Dj

)LK,Dj
− I)((LK,Dj

+ λI)r− 1
2 − (LK + λI)r− 1

2 )‖
=: B1,Dj

+ B2,Dj
.

The first term B1,Dj
above can be estimated easily from Proposition 1 and Lemma 5:

with confidence at least 1 − δ, there holds

B1,Dj
≤ 2r+1/2

[

(B|Dj |,λ log 2
δ√

λ

)2

+ 1

]1/2

‖uρ‖ρ(b + 1 + γr)λ
r. (47)

The most technical part of the proof is to estimate the second term B2,Dj
above.

We shall do so in two different cases on the following operator decomposition

(LK,Dj
+ λI)r−1/2 − (LK + λI)r−1/2

= (LK,Dj
+ λI)

(

(LK,Dj
+ λI)r−3/2 − (LK,Dj

+ λI)−1(LK + λI)r−1/2
)

= (LK,Dj
+ λI)

(

((LK,Dj
+ λI)r−3/2 − (LK + λI)r−3/2)

+ ((LK + λI)−1 − (LK,Dj
+ λI)−1)(LK + λI)r−1/2

)

.

Case 1: 3/2 < r ≤ 5/2. In this case 0 < r − 3/2 ≤ 1. Then,

(LK,Dj
+ λI)r−3/2 − (LK + λI)r−3/2

= (LK,Dj
+ λI)r−3/2

(

I − (LK,Dj
+ λI)−(r−3/2)(LK + λI)r−3/2

)
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and

((LK + λI)−1 − (LK,Dj
+ λI)−1)(LK + λI)r−1/2

= (LK + λI)−1(LK,Dj
− LK)(LK,Dj

+ λI)−1(LK + λI)r−1/2.

Thus we have

B2,Dj
≤ Ξ

1/2
Dj

‖uρ‖ρ

∥

∥(LK,Dj
+ λI)1/2(gλ(LK,Dj

)LK,Dj
− I)(LK,Dj

+ λI)

·
(

(LK,Dj
+ λI)r−3/2

(

I − (LK,Dj
+ λI)−(r−3/2)(LK + λI)r−3/2

)

+ (LK + λI)−1(LK,Dj
− LK)(LK,Dj

+ λI)−1(LK + λI)r−1/2
)
∥

∥

≤ Ξ
1/2
Dj

‖uρ‖ρ

∥

∥(gλ(LK,Dj
)LK,Dj

− I)(LK,Dj
+ λI)r

∥

∥

·
(

1 +
∥

∥(LK,Dj
+ λI)−(r−3/2)(LK + λI)r−3/2

∥

∥

)

+ Ξ
1/2
Dj

‖uρ‖ρ

∥

∥(gλ(LK,Dj
)LK,Dj

− I)(LK,Dj
+ λI)3/2

∥

∥

· 1√
λ

∥

∥(LK + λI)−1/2(LK,Dj
− LK)

∥

∥ΞDj

∥

∥(LK + λI)r−3/2
∥

∥ .

Since 0 < r − 3/2 ≤ 1, we have from (33) that
∥

∥(LK,Dj
+ λI)−(r−3/2)(LK + λI)r−3/2

∥

∥ ≤ Ξ
r−3/2
Dj

.

It follows from (24), Lemma 5, and ‖LK‖ ≤ κ2 that there exists a subset Z
|Dj |
δ,1 of Z |Dj |

with measure 1 − δ such that for Dj ∈ Z |Dj |
δ,1 ,

B2,Dj
≤ Ξ

1/2
Dj

‖uρ‖ρ2
r(b + 1 + γr)λ

r(1 + Ξ
r−3/2
Dj

)

+ (2κ)3Ξ
3/2
Dj

‖uρ‖ρ(b + 1 + γ3/2)λB|Dj |,λ log
2

δ
.

According to Proposition 1, there exists a subset Z |Dj |
δ,2 of Z |Dj |

δ,1 with measure 1 − 2δ

such that for Dj ∈ Z |Dj |
δ,2 ,

B2,Dj
≤ 4r‖uρ‖ρ

[

(B|Dj |,λ log 2
δ√

λ

)2

+ 1

]r−1

(b + 1 + γr)λ
r

+ (2κ)3
√

2

[

(B|Dj |,λ log 2
δ√

λ

)2

+ 1

]3/2

‖uρ‖ρ(b + 1 + γ3/2)λB|Dj |,λ log
2

δ

≤ ‖uρ‖ρ

[

(B|Dj |,λ log 2
δ√

λ

)2

+ 1

]3/2

×
[

4r(b + 1 + γr)λ
r + (2κ)3

√
2(b + 1 + γ3/2)λB|Dj |,λ log

2

δ

]

.

This together with (47) tells us that with confidence at least 1 − δ, ‖E∗[fDj ,λ] − fρ‖ρ is

bounded by

2r+1/2

[

(B|D|,λ log 4
δ√

λ

)2

+ 1

]1/2

‖uρ‖ρ(b + 1 + γr)λ
r
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+ ‖uρ‖ρ

[

(B|Dj |,λ log 4
δ√

λ

)2

+ 1

]3/2

×
[

4r(b + 1 + γr)λ
r + (2κ)3

√
2(b + 1 + γ3/2)λB|Dj |,λ log

4

δ

]

≤ C̃ ′

[

(B|Dj |,λ√
λ

)2

+ 1

]3/2
[

λr + λB|Dj |,λ
]

(

log
4

δ

)4

,

where

C̃ ′ = ‖uρ‖ρ max{(2r+1/2 + 4r)(b + 1 + γr), (2κ)3
√

2(b + 1 + γ3/2)}. (48)

Then, using the formula (40), we have

E[‖E∗[fDj ,λ] − fρ‖ρ] ≤ 4C̃ ′Γ(5)

[

(B|Dj |,λ√
λ

)2

+ 1

]3/2
[

λr + λB|Dj |,λ
]

.

This means

‖E[fDj ,λ] − fρ‖2
ρ ≤ (4C̃ ′Γ(5))2

[

(B|Dj |,λ√
λ

)2

+ 1

]3
[

λr + λB|Dj |,λ
]2

.

The above estimate together with (46) and (41) yields

E[‖fD,λ − fρ‖2
ρ] ≤ 6Γ(7)C2

m
∑

j=1

|Dj|2
|D|2

[

(B|Dj |,λ√
λ

)2

+ 1

]2 [

B|Dj |,λ +

(

λ

|Dj|

)
1
2

+ λr

]2

+ (4C̃ ′Γ(5))2
m
∑

j=1

|Dj|
|D|

[

(B|Dj |,λ√
λ

)2

+ 1

]3
[

λr + λB|Dj |,λ
]2

.

This verifies the desired bound in the case 3
2

< r ≤ 5
2
.

Case 2: r > 5/2. In this case, we do not need to apply Lemma 2 to control the

norm of a product operator. Instead, we can apply Lemma 4 directly (but lose the

advantage of a tighter index r) to get

B2,Dj
≤ Ξ

1/2
Dj

‖uρ‖ρ

∥

∥(LK,Dj
+ λI)1/2(gλ(LK,Dj

)LK,Dj
− I)(LK,Dj

+ λI)

·
(

((LK,Dj
+ λI)r−3/2 − (LK + λI)r−3/2)

+ (LK + λI)−1(LK,Dj
− LK)(LK,Dj

+ λI)−1(LK + λI)r−1/2
)
∥

∥ .

It follows from Lemma 5 that

B2,Dj
≤ 23/2(b + 1 + γ3/2)λ

3/2Ξ
1/2
Dj

‖uρ‖ρ

·
(

(r − 3/2)κ2r−5‖LK,Dj
− LK‖ + ΞDj

(2κ)2r−3

√
λ

‖(LK + λI)−1/2(LK,Dj
− LK)‖

)

.

From Proposition 1, (23) and (24), with confidence at least 1 − δ, there holds

B2,Dj
≤ 4(b + 1 + γ3/2)λ

3/2

[

(B|Dj |,λ log 6
δ√

λ

)2

+ 1

]1/2

‖uρ‖ρ

·
(

(r − 3/2)κ2r−54κ2 log 6/δ
√

|Dj|
+ 2

[

(B|Dj |,λ log 6
δ√

λ

)2

+ 1

]

(2κ)2r−3

√
λ

B|Dj |,λ log
6

δ

)

.
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Combining the above estimate with (47), we obtain, with confidence 1 − δ,

‖E∗[fDj ,λ] − fρ‖ρ ≤ 2r+1/2

[

(B|Dj |,λ log 6
δ√

λ

)2

+ 1

]1/2

‖uρ‖ρ(b + 1 + γr)λ
r

+ 4(b + 1 + γ3/2)λ
3/2

[

(B|Dj |,λ log 6
δ√

λ

)2

+ 1

]1/2

‖uρ‖ρ

·
(

(r − 3/2)κ2r−54κ2 log 6/δ
√

|Dj|
+ 2

[

(B|Dj |,λ log 6
δ√

λ

)2

+ 1

]

(2κ)2r−3

√
λ

B|Dj |,λ log
6

δ

)

≤ C ′′

[

(B|Dj |,λ√
λ

)2

+ 1

]3/2(

λr + λ3/2 1
√

|Dj|
+ λB|Dj |,λ

)

(

log
6

δ

)4

,

where

C ′′ = ‖uρ‖ρ max{2r+1/2(b + 1 + γr), 4(b + 1 + γ3/2)(γ − 3/2)κ2r−5, 8(2b + γ3/2)(2κ)2r−3}.

By (40), we have

E[‖E∗[fDj ,λ] − fρ‖ρ] ≤ C ′′6Γ(5)

[

(B|Dj |,λ√
λ

)2

+ 1

]3/2(

λr + λ3/2 1
√

|Dj|
+ λB|Dj |,λ

)

.

Hence

‖E[fDj ,λ] − fρ‖2
ρ ≤ (C ′′6Γ(5))2

[

(B|Dj |,λ√
λ

)2

+ 1

]3(

λr + λ3/2 1
√

|Dj|
+ λB|Dj |,λ

)2

.

The above estimate, together with (46) and (41), tells us that E[‖fD,λ−fρ‖2
ρ] is bounded

by

6Γ(7)C2
m
∑

j=1

|Dj|2
|D|2

[

(B|Dj |,λ√
λ

)2

+ 1

]2 [

B|Dj |,λ +

(

λ

|Dj |

)
1
2

+ λr

]2

+ (C ′′6Γ(5))2
m
∑

j=1

|Dj|
|D|

[

(B|Dj |,λ√
λ

)2

+ 1

]3(

λr + λ3/2 1
√

|Dj|
+ λB|Dj |,λ

)2

.

This proves the desired bound in the case of r > 5/2. The proof of Theorem 1 is

complete. �

Proof of Corollary 1. Putting the choice λ = N−1/(2r+β) into condition (8)

yields N (λ) ≤ C0N
β/(2r+β). For 1/2 ≤ r ≤ 3/2, since m ≤ N (2r−1)/(2r+β) and

|D1| = |D2| = . . . = |Dm|, we have

N (λ)

λ|Dj|
≤ C0mN

1−2r
2r+β ≤ C0.

We also have, for each j = 1, . . . , m,

B|Dj |,λ√
λ

=
2κ

√

λ|Dj |

{

κ
√

|Dj|λ
+
√

N (λ)

}

≤ 2κ(κ +
√

C0)
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and

|Dj|
|D| B

2
|Dj |,λ ≤ 4κ2

|D|

{

κ
√

|Dj|λ
+
√

N (λ)

}2

≤ 4κ2(κ +
√

C0)
2N−2r/(2r+β).

Then by Theorem 1,

E[‖fD,λ − fρ‖2
ρ] ≤ C̃

1

m

m
∑

j=1

(4κ2(κ +
√

C0)
2)3(4κ2(κ +

√

C0)
2 + 1)N− 2r

2r+β

= ĈN− 2r
2r+β ,

where

Ĉ = C̃(4κ2(κ +
√

C0)
2)3(4κ2(κ +

√

C0)
2 + 1).

For r > 3/2, since m ≤ N2/(2r+β), we have

|Dj|
|D| B

2
|Dj |,λ ≤ 4κ2(κ +

√

C0)
2N−2r/(2r+β),

and

λ2B2
|Dj |,λ ≤ 4κ2(κ +

√

C0)
2N−2r/(2r+β).

So by Theorem 1, we have

E[‖fD,λ − fρ‖2
ρ] ≤ C̃

1

m

m
∑

j=1

(4κ2(κ +
√

C0)
2 + 1)3(8κ2(κ +

√

C0)
2 + 3)N− 2r

2r+β

= Ĉ ′N− 2r
2r+β ,

where

Ĉ ′ = C̃(4κ2(κ +
√

C0)
2 + 1)3(8κ2(κ +

√

C0)
2 + 3).

This completes the proof of Corollary 1. �
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