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Abstract

We study distributed learning with the least squares regularization scheme in a reproducing
kernel Hilbert space (RKHS). By a divide-and-conquer approach, the algorithm partitions
a data set into disjoint data subsets, applies the least squares regularization scheme to each
data subset to produce an output function, and then takes an average of the individual
output functions as a final global estimator or predictor. We show with error bounds and
learning rates in expectation in both the L2-metric and RKHS-metric that the global
output function of this distributed learning is a good approximation to the algorithm
processing the whole data in one single machine. Our derived learning rates in expectation
are optimal and stated in a general setting without any eigenfunction assumption. The
analysis is achieved by a novel second order decomposition of operator differences in our
integral operator approach. Even for the classical least squares regularization scheme in
the RKHS associated with a general kernel, we give the best learning rate in expectation
in the literature.

Keywords: Distributed learning, divide-and-conquer, error analysis, integral operator,
second order decomposition.

1. Introduction and Distributed Learning Algorithms

In the era of big data, the rapid expansion of computing capacities in automatic data gener-
ation and acquisition brings data of unprecedented size and complexity, and raises a series
of scientific challenges such as storage bottleneck and algorithmic scalability (Zhou et al.,
2014). To overcome the difficulty, some approaches for generating scalable approximate
algorithms have been introduced in the literature such as low-rank approximations of ker-
nel matrices for kernel principal component analysis (Schölkopf et al., 1998; Bach, 2013),
incomplete Cholesky decomposition (Fine, 2002), early-stopping of iterative optimization
algorithms for gradient descent methods (Yao et al., 2007; Raskutti et al., 2014; Lin et
al., 2016), and greedy-type algorithms. Another method proposed recently is distributed
learning based on a divide-and-conquer approach and a particular learning algorithm imple-
mented in individual machines (Zhang et al., 2015; Shamir and Srebro, 2014). This method
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produces distributed learning algorithms consisting of three steps: partitioning the data
into disjoint subsets, applying a particular learning algorithm implemented in an individual
machine to each data subset to produce an individual output (function), and synthesiz-
ing a global output by utilizing some average of the individual outputs. This method can
significantly reduce computing time and lower single-machine memory requirements. For
practical applications in medicine, finance, business and some other areas, the data are
often stored naturally across multiple servers in a distributive way and are not combined
for reasons of protecting privacy and avoiding high costs. In such situations, the first step
of data partitioning is not needed. It has been observed in many practical applications that
when the number of data subsets is not too large, the divide-and-conquer approach does not
cause noticeable loss of performance, compared with the learning scheme which processes
the whole data on a single big machine. Theoretical attempts have been recently made in
(Zhang et al., 2013, 2015) to derive learning rates for distributed learning with least squares
regularization schemes under certain assumptions.

This paper aims at error analysis of the distributed learning with regularized least
squares and its approximation to the algorithm processing the whole data in one single
machine. Recall (Cristianini and Shawe-Taylor, 2000; Evgeniou et al., 2000) that in a
reproducing kernel Hilbert space (RKHS) (HK , ‖ · ‖K) induced by a Mercer kernel K on an
input metric space X , with a sample D = {(xi, yi)}Ni=1 ⊂ X ×Y where Y = R is the output
space, the least squares regularization scheme can be stated as

fD,λ = arg min
f∈HK

 1

|D|
∑

(x,y)∈D

(f(x)− y)2 + λ‖f‖2K

 . (1)

Here λ > 0 is a regularization parameter and |D| =: N is the cardinality of D. This learning
algorithm is also called kernel ridge regression in statistics and has been well studied in
learning theory. See e.g. (De Vito et al., 2005; Caponnetto and De Vito, 2007; Steinwart
et al., 2009; Bauer et al., 2007; Smale and Zhou, 2007; Steinwart and Christmann, 2008).
The regularization scheme (1) can be explicitly solved by using a standard matrix inversion
technique, which requires costs of O(N3) in time and O(N2) in memory. However, this
matrix inversion technique may not conquer challenges on storages or computations arising
from big data.

The distributed learning algorithm studied in this paper starts with partitioning the
data set D into m disjoint subsets {Dj}mj=1. Then it assigns each data subset Dj to one
machine or processor to produce a local estimator fDj ,λ by the least squares regularization
scheme (1). Finally, these local estimators are communicated to a central processor, and a
global estimator fD,λ is synthesized by taking a weighted average

fD,λ =

m∑
j=1

|Dj |
|D|

fDj ,λ (2)

of the local estimators {fDj ,λ}mj=1. This algorithm has been studied with a matrix analysis
approach in (Zhang et al., 2015) where some error analysis has been conducted under some
eigenfunction assumptions for the integral operator associated with the kernel, presenting
error bounds in expectation.
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In this paper we shall use a novel integral operator approach to prove that fD,λ is a

good approximation of fD,λ. We present a representation of the difference fD,λ − fD,λ
in terms of empirical integral operators, and analyze the error fD,λ − fD,λ in expectation
without any eigenfunction assumptions. As a by-product, we present the best learning
rates in expectation for the least squares regularization scheme (1) in a general setting,
which surprisingly has not been done for a general kernel in the literature (see detailed
comparisons below).

2. Main Results

Our analysis is carried out in the standard least squares regression framework with a Borel
probability measure ρ on Z := X ×Y, where the input space X is a compact metric space.
The sample D is independently drawn according to ρ. The Mercer kernel K : X × X → R
defines an integral operator LK on HK as

LK(f) =

∫
X
Kxf(x)dρX , f ∈ HK , (3)

where Kx is the function K(·, x) in HK and ρX is the marginal distribution of ρ on X .

2.1 Error Bounds for the Distributed Learning Algorithm

Our error bounds in expectation for the distributed learning algorithm (2) require the
uniform boundedness condition for the output y, that is, for some constant M > 0, there
holds |y| ≤M almost surely. Our bounds are stated in terms of the approximation error

‖fλ − fρ‖ρ, (4)

where fλ is the data-free limit of (1) defined by

fλ = arg min
f∈HK

{∫
Z

(f(x)− y)2dρ+ λ‖f‖2K
}
, (5)

‖ ·‖ρ denotes the norm of L2
ρ
X

, the Hilbert space of square integrable functions with respect

to ρX , and fρ is the regression function (conditional mean) of ρ defined by

fρ(x) =

∫
Y
ydρ(y|x), x ∈ X ,

with ρ(·|x) being the conditional distribution of ρ induced at x ∈ X .
Since K is continuous, symmetric and positive semidefinite, LK is a compact positive

operator of trace class and LK+λI is invertible. Define a quantity measuring the complexity
of HK with respect to ρX , the effective dimension (Zhang, 2005), to be the trace of the
operator (LK + λI)−1LK as

N (λ) = Tr
(
(LK + λI)−1LK

)
, λ > 0. (6)

In Section 6 we shall prove the following first main result of this paper concerning error
bounds in expectation of fD,λ − fD,λ in HK and in L2

ρ
X

. Denote κ = supx∈X
√
K(x, x).
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Theorem 1 Assume |y| ≤M almost surely. If |Dj | = N
m for j = 1, . . . ,m, then we have

E
∥∥fD,λ − fD,λ∥∥ρ ≤ Cκ

{
M
√
λmCm

{
1 +

√
mCm

}
+
‖fρ − fλ‖ρ√

Nλ
m

(√
N (λ)

Nλ
+
√
mCm

)}
and

E
∥∥fD,λ − fD,λ∥∥K ≤ Cκ

{
M
√
mCm

{
1 +

√
mCm

}
+
‖fρ − fλ‖ρ√

Nλ
m

(√
N (λ)

Nλ
+
√
mCm

)}
,

where Cκ is a constant depending only on κ, and Cm is the quantity given in terms of
m,N, λ,N (λ) by

Cm :=
m

(Nλ)2
+
N (λ)

Nλ
.

To derive explicit learning rates from the general error bounds in Theorem 1, one can
quantify the increment of N (λ) by the following capacity assumption, a characteristic of the
complexity of the hypothesis space (Caponnetto and De Vito, 2007; Blanchard and Krämer,
2010),

N (λ) ≤ cλ−β, ∀λ > 0 (7)

for some constants β > 0 and c > 0. Let {(λ`, ϕ`)}` be a set of normalized eigenpairs of
LK on HK with {ϕ`}` being an orthonormal basis of HK and {λ`}` arranged in a non-
increasing order. A sufficient condition for the capacity assumption (7) with 0 < β < 1 is
λ` = O(`−1/β), which can be found in, e.g. Caponnetto and De Vito (2007).

Remark 2 The sufficient condition λ` = O(`−1/β) with the index β = d
2τ < 1 is satisfied

by the Sobolev space W τ (B(Rd)) with the smoothness index τ > d/2 on a ball B(Rd) of
the Euclidean space Rd when the marginal distribution ρX is the uniform distribution on
B(Rd), see (Steinwart et al., 2009; Edmunds and Triebel, 1996).

Condition (7) with β = 1 always holds true with the choice of the constant c = κ2. In
fact, the eigenvalues of the operator (LK + λI)−1LK are { λ`

λ`+λ
}`. So its trace is given by

N (λ) =
∑

`
λ`

λ`+λ
≤
∑

`
λ`
λ = Tr(LK)

λ ≤ κ2λ−1.

In the existing literature on learning rates for the classical least squares algorithm (1),

the regularization parameter λ is often taken to satisfy the restriction N (λ)
Nλ = O(1) as in

(Caponnetto and De Vito, 2007) up to a logarithmic factor or in (Steinwart et al., 2009)
under some assumptions on (K, ρX) (see (14) below). Here, to derive learning rates for
E
∥∥fD,λ − fD,λ∥∥ρ with m ≥ 1 corresponding to the distributed learning algorithm (2), we

consider λ to satisfy the following restriction with some constant C0 > 0,

0 < λ ≤ C0 and
mN (λ)

Nλ
≤ C0. (8)

Corollary 3 Assume |y| ≤M almost surely. If |Dj | = N
m for j = 1, . . . ,m, and λ satisfies

(8), then we have

E
∥∥fD,λ − fD,λ∥∥ρ ≤ C̃κ

√
N (λ)

Nλ

{
M
√
λ+

m‖fρ − fλ‖ρ√
Nλ

}
4
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and

E
∥∥fD,λ − fD,λ∥∥K ≤ C̃κ

√
N (λ)

Nλ

{
M +

m‖fρ − fλ‖ρ√
Nλ

}
,

where C̃κ is a constant depending only on κ, C0, and the largest eigenvalue of LK .

In the special case that fρ ∈ HK , the approximation error can be bounded as ‖fλ−fρ‖ρ ≤
‖fρ‖K

√
λ. A more general regularity condition can be imposed for the regression function

as
fρ = LrK(gρ) for some gρ ∈ L2

ρX
, r > 0, (9)

where the integral operator LK is regarded as a compact positive operator on L2
ρX

and
its rth power LrK is well defined for any r > 0. The condition (9) means fρ lies in the
range of LrK , and the special case fρ ∈ HK corresponds to the choice r = 1/2. It implies
‖fλ − fρ‖ρ ≤ λr‖gρ‖ρ by Lemma 21 below. Thus, under condition (9), we obtain from
Corollary 3, by choosing λ to minimize the order of the error bound subject to the restriction
(8), the following nice convergence rates for the error

∥∥fD,λ − fD,λ∥∥ of the distributed
learning algorithm (2).

Corollary 4 Assume regularity condition (9) for some 0 < r ≤ 1, capacity assumption (7)
with β = 1

2α for some α > 0, and |y| ≤M almost surely. If |Dj | = N
m for j = 1, . . . ,m with

m ≤ N
αmax{2r,1}+1

2+2α(r−1)

2αmax{2r,1}+1+2α(r−1) , (10)

and λ =
(
m
N

) 2α
2αmax{2r,1}+1 , then we have

E
∥∥fD,λ − fD,λ∥∥ρ ≤ C̃κ,c,r 1√

m

(m
N

) αmax{2r,1}
2αmax{2r,1}+1

and

E
∥∥fD,λ − fD,λ∥∥K ≤ C̃κ,c,r 1√

m

(m
N

) αmax{2r−1,0}
2αmax{2r,1}+1

,

where C̃κ,c,r is a constant independent of N or m.

In particular, when fρ ∈ HK and m ≤ N
1

2+2α , taking λ =
(
m
N

) 2α
2α+1 yields the rates

E
∥∥fD,λ − fD,λ∥∥ρ ≤ C̃κ,c,rN− α

2α+1m−
1

4α+2 and E
∥∥fD,λ − fD,λ∥∥K ≤ C̃κ,c,r 1√

m
.

Remark 5 In Corollary 4, we present learning rates in both HK and L2
ρX

norms. The rates
with respect to the L2

ρX
norm provide estimates for the generalization ability of the algorithm

for regression. The rates with respect to the HK norm give error estimates with respect to
the uniform metric due to the relation ‖f‖∞ ≤ κ‖f‖K , and might be used to solve some
mismatch problems in learning theory where the generalization ability of learning algorithms
is measured with respect to a probability measure µ different from ρX .

Remark 6 The learning rates in Corollary 4 are stated for the norms of the difference
fD,λ−fD,λ which reflects the variance of the distributed learning algorithm (2). These rates
decrease as m increases (subject to the restriction (10)) and thereby the regularization pa-
rameter λ increases, which is different from the learning rates presented for E

∥∥fD,λ − fρ∥∥ρ
in (Zhang et al., 2015). To derive learning rates for E

∥∥fD,λ − fρ∥∥ρ by our analysis, the

regularization parameter λ should be independent of m, as shown in Corollary 11 below.
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2.2 Optimal Learning Rates for Least Squares Regularization Scheme

The second main result of this paper is optimal learning rates in expectation for the least
squares regularization scheme (1). We can even relax the uniform boundedness to a moment
condition that for some constant p ≥ 1,

σ2ρ ∈ LpρX , (11)

where σ2ρ is the conditional variance defined by σ2ρ(x) =
∫
Y (y − fρ(x))2 dρ(y|x).

The following learning rates in expectation for the least squares regularization scheme
(1) will be proved in Section 5. The existence of fλ is ensured by E[y2] <∞.

Theorem 7 Assume E[y2] < ∞ and moment condition (11) for some 1 ≤ p ≤ ∞. Then
we have

E
[
‖fD,λ − fρ‖ρ

]
≤
(
2 + 56κ4 + 57κ2

)
(1 + κ)

(
1 +

1

(Nλ)2
+
N (λ)

Nλ

)
{(

1 +
1√
Nλ

)
‖fλ − fρ‖ρ +

√∥∥σ2ρ∥∥p(N (λ)

N

) 1
2
(1− 1

p
)( 1

Nλ

) 1
2p
}
. (12)

If the parameters satisfy N (λ)
Nλ = O(1), we have the following explicit bound.

Corollary 8 Assume E[y2] < ∞ and moment condition (11) for some 1 ≤ p ≤ ∞. If λ
satisfies (8) with m = 1, then we have

E
[
‖fD,λ − fρ‖ρ

]
= O

(
‖fλ − fρ‖ρ +

(
N (λ)

N

) 1
2
(1− 1

p
)( 1

Nλ

) 1
2p

)
.

In particular, if p =∞, that is, the conditional variances are uniformly bounded, then

E
[
‖fD,λ − fρ‖ρ

]
= O

(
‖fλ − fρ‖ρ +

√
N (λ)

N

)
.

In particular, when regularity condition (9) is satisfied, we have the following learning
rates in expectation.

Corollary 9 Assume E[y2] < ∞, moment condition (11) for some 1 ≤ p ≤ ∞, and

regularity condition (9) for some 0 < r ≤ 1. If the capacity assumption N (λ) = O(λ−
1
2α )

holds with some α > 0, then by taking λ = N
− 2α

2αmax{2r,1}+1 we have

E
[
‖fD,λ − fρ‖ρ

]
= O

(
N
− 2rα

2αmax{2r,1}+1
+ 1

2p
2α−1

2αmax{2r,1}+1

)
.

In particular, when p =∞ (the conditional variances are uniformly bounded), we have

E
[
‖fD,λ − fρ‖ρ

]
= O

(
N
− 2rα

2αmax{2r,1}+1

)
.
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Remark 10 It was shown in (Caponnetto and De Vito, 2007; Steinwart et al., 2009; Bauer
et al., 2007) that under the condition of Corollary 9 with p = ∞ and r ∈ [12 , 1], the best
learning rate, called minimax lower rate of convergence, for learning algorithms with output

functions in HK is O
(
N−

2rα
4αr+1

)
. So the convergence rate we obtain in Corollary 9 is

optimal.

Combining bounds for
∥∥fD,λ − fD,λ∥∥ρ and ‖fD,λ − fρ‖ρ, we shall prove in Section 6

the following learning rates in expectation for the distributed learning algorithm (2) for
regression.

Corollary 11 Assume |y| ≤ M almost surely and regularity condition (9) for some 1
2 <

r ≤ 1. If the capacity assumption N (λ) = O(λ−
1
2α ) holds with some α > 0, |Dj | = N

m for
j = 1, . . . ,m, and m satisfies the restriction

m ≤ N
2α(2r−1)
4αr+1 , (13)

then by taking λ = N−
2α

4αr+1 , we have

E
[∥∥fD,λ − fρ∥∥ρ] = O

(
N−

2αr
4αr+1

)
.

Remark 12 Corollary 11 shows that distributed learning with the least squares regulariza-
tion scheme in a RKHS can achieve the optimal learning rates in expectation, provided that
m satisfies the restriction (13). It should be pointed out that our error analysis is carried
out under regularity condition (9) with 1/2 < r ≤ 1 while the work in (Zhang et al., 2015)
focused on the case with r = 1/2. When r approaches 1/2, the number m of local proces-
sors under the restriction (13) reduces to 1, which corresponds to the non-distributed case.
In our follow-up work, we will consider to relax the restriction (13) in a semi-supervised
learning framework by using additional unlabelled data, as done in (Caponnetto and Yao,
2010). The main contribution of our analysis for distributed learning in this paper is to
remove an eigenfunction assumption in (Zhang et al., 2015) by using a novel second order
decomposition for a difference of operator inverses.

Remark 13 In Corollary 11 and Corollary 9, the choice of the regularization parameter
λ is independent of the number m of local processors. This is consistent with the results
in (Zhang et al., 2015). There have been several approaches for selecting the regularization
parameter λ in regularization schemes in the literature including cross-validation (Györfy et
al., 2002; Blanchard and Krämer, 2016) and the balancing principle (De Vito et al., 2010).
For practical applications of distributed learning algorithms, how to choose λ and m (except
the situations when the data are stored naturally in a distributive way) is crucial. Though
we only consider the theoretical topic of error analysis in this paper, it would be interesting
to develop parameter selection methods for distributed learning.

3. Comparisons and Discussion

The least squares regularization scheme (1) is a classical algorithm for regression and has
been extensively investigated in statistics and learning theory. There is a vast literature on

7
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this topic. Here for a general kernel beyond those for the Sobolev spaces, we compare our
results with the best learning rates in the existing literature.

Under the assumption that the orthogonal projection fH of fρ in L2
ρX

onto the closure

of HK satisfies regularity condition (9) for some 1
2 ≤ r ≤ 1, and that the eigenvalues {λi}i

of LK satisfy λi ≈ i−2α with some α > 1/2, it was proved in (Caponnetto and De Vito,
2007) that

lim
τ→∞

lim sup
N→∞

sup
ρ∈P(α)

Prob
[
‖fD,λN − fH‖

2
ρ > τλ2rN

]
= 0,

where

λN =

 N−
2α

4αr+1 , if 1
2 < r ≤ 1,(

logN
N

) 2α
2α+1

, if r = 1
2 ,

and P(α) denotes a set of probability measures ρ satisfying some moment decay condition
(which is satisfied when |y| ≤ M). This learning rate in probability is stated with a limit
as τ → ∞ and it has a logarithmic factor in the case r = 1

2 . In particular, to guarantee

‖fD,λN − fH‖
2
ρ ≤ τηλ

2r
N with confidence 1−η by this result, one needs to restrict N ≥ Nη to

be large enough and has the constant τη depending on η to be large enough. Using existing
tools for error analysis including those in (Caponnetto and De Vito, 2007), we develop
a novel second order decomposition technique for a difference of operator inverses in this
paper, and succeed in deriving the optimal learning rate in expectation in Corollary 9 by
removing the logarithmic factor in the case r = 1

2 .
Under the assumption that |y| ≤ M almost surely, the eigenvalues {λi}i satisfying

λi ≤ ai−2α with some α > 1/2 and a > 0, and for some constant C > 0, the pair (K, ρX)
satisfying

‖f‖∞ ≤ C‖f‖
1
2α
K ‖f‖

1− 1
2α

ρ (14)

for every f ∈ HK , it was proved in (Steinwart et al., 2009) that for some constant cα,C
depending only on α and C, with confidence 1− η, for any 0 < λ ≤ 1,

‖πM (fD,λ)− fρ‖2ρ ≤ 9A2(λ) + cα,C
a1/(2α)M2 log(3/η)

λ1/(2α)N
.

Here πM is the projection onto the interval [−M,M ] defined (Chen et al., 2004; Wu et al.,
2006) by

πM (f)(x) =


M, if f(x) > M,
f(x), if |f(x)| ≤M,
−M, if f(x) < −M,

and A2(λ) is the approximation error defined by

A2(λ) = inf
f∈HK

{
‖f − fρ‖2ρ + λ‖f‖2K

}
.

When fρ ∈ HK , A2(λ) = O(λ) and the choice λN = N
2α

2α+1 gives a learning rate of

order ‖fD,λN − fρ‖ρ = O
(
N−

α
2α+1

)
. Here one needs to impose the condition (14) for the

functions spaces L2
ρX

and HK , and to take the projection onto [−M,M ]. Our learning rates

8
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in Corollary 9 do not require such a condition for the function spaces, nor do we take the
projection. Let us mention the fact from (Steinwart et al., 2009; Mendelson and Neeman,
2010) that condition (14) is satisfied whenHK is a Sobolev space on a domain of a Euclidean
space and ρX is the uniform distribution, or when the eigenfunctions {ϕ`/

√
λ` : λ` > 0}

of LK normalized in L2
ρX

are uniformly bounded. Recall that ‖ϕ`‖L2
ρX

=
√
λ` since λ` =

λ`‖ϕ`‖2K = 〈λ`ϕ`, ϕ`〉K = 〈LKϕ`, ϕ`〉K equals

〈
∫
X
Kxϕ`(x)dρX(x), ϕ`〉K =

∫
X
ϕ`(x)ϕ`(x)dρX(x) = ‖ϕ`‖2L2

ρX
.

Learning rates for the least squares regularization scheme (1) in the HK-metric have
been investigated in (Smale and Zhou, 2007).

For the distributed learning algorithm (2) with subsets {Dj}mj=1 of equal size, under the
assumption that for some constants 2 < k ≤ ∞ and A <∞, the eigenfunctions {ϕi}i satisfy

supλi>0E

[∣∣∣ϕi(x)√
λi

∣∣∣2k] ≤ A2k, when k <∞,

supλi>0

∥∥∥ϕi(x)√
λi

∥∥∥
∞
≤ A, when k =∞,

(15)

and that fρ ∈ HK and λi ≤ ai−2α for some α > 1/2 and a > 0, it was proved in (Zhang et

al., 2015) that for λ = N−
2α

2α+1 and m satisfying the restriction

m ≤ cα


(
N

2(k−4)α−k
2α+1

A4k logk N

) 1
k−2

, when k <∞

N
2α−1
2α+1

A4 logN
, when k =∞

(16)

with a constant cα depending only on α, there holds E
[∥∥fD,λ − fρ∥∥2ρ] = O

(
N−

2α
2α+1

)
. This

interesting result was achieved by a matrix analysis approach for which the eigenfunction
assumption (15) played an essential role.

It might be challenging to check the eigenfunction assumption (15) involving the integral
operator LK = LK,ρX for the pair (K, ρX). To our best knowledge, besides the case of
finite dimensional RKHSs, there exist in the literature only three classes of pairs (K, ρX)
proved satisfying this eigenfunction assumption: the first class (Steinwart et al., 2009) is
the Sobolev reproducing kernels on Euclidean domains together with the unform measures
ρX , the second (Williamson et al., 2001) is periodical kernels, and the third class can be
constructed by a Mercer type expansion

K(x, y) =
∑
i

λi
ϕi(x)√
λi

ϕi(y)√
λi
, (17)

where {ϕi(x)√
λi
}i is an orthonormal system in L2

ρX
. An example of a C∞ Mercer kernel was

presented in (Zhou, 2002, 2003) to show that only the smoothness of the Mercer kernel does

not guarantee the uniform boundedness of the eigenfunctions {ϕi(x)√
λi
}i. Furthermore, it was

shown in (Gittens and Mahoney, 2016) that these normalized eigenfunctions associated
with radial basis kernels tend to be localized when the radial basis parameters are made
smaller, which raises a practical concern for the uniform boundedness assumption on the
eigenfunctions.
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Remark 14 To see how the eigenfunctions {ϕi(x)}i change with the marginal distribution,
we consider a different measure µ induced by a nonnegative function P ∈ L2

ρX
as dµ =

P (x)dρX . An eigenpair (λ, ϕ) of the integral operator LK,µ associated with the pair (K,µ)
with λ > 0 satisfies

LK,µϕ =

∫
X
K(·, x)ϕ(x)P (x)dρX =

∑
λi>0

λi
ϕi√
λi

∫
X

ϕi(x)√
λi
ϕ(x)P (x)dρX = λϕ.

We introduce an index set I := {i : λi > 0}, a possibly infinite matrix

KP =

(
λi

∫
X

ϕi(x)√
λi
P (x)

ϕj(x)√
λj

dρX

)
i,j∈I

, (18)

and express ϕ in terms of the orthonormal basis {ϕi}i∈I as ϕ =
∑

i∈I
ci√
λi
ϕi where the

sequence c = (ci)i∈I is given by ci = 〈ϕ, ϕi√
λi
〉L2

ρX
=
√
λi〈ϕ,ϕi〉K . Then the eigenpair (λ, ϕ)

satisfies

LK,µϕ = λϕ ⇐⇒
∑
i∈I

ϕi√
λi

∑
j∈I

(
KP
)
i,j
cj = λ

∑
i∈I

ci√
λi
ϕi ⇐⇒ KP c = λc.

Thus the eigenpairs of the integral operator LK,µ associated with (K,µ) can be characterized
by those of the possibly infinite matrix KP defined by (18). Finding the eigenpairs of KP is
an interesting question involving matrix analysis in linear algebra and multiplier operators
in harmonic analysis. Note that when P ≡ 1 corresponding to µ = ρX , KP is diagonal with
diagonal entries {λi}i and its eigenvectors yield eigenfunctions {ϕi}i.

From the above observation, we can see that the marginal distribution ρX plays an essen-
tial role in the eigenfunction assumption (15) which might be difficult to check for a general
marginal distribution ρX . For example, it is even unknown whether any of the Gaussian
kernels on X = [0, 1]d satisfies the eigenfunction assumption (15) when ρX is a general
Borel measure.

Our learning rates stated in Corollary 4 or Corollary 11 do not require the eigenfunction
assumption (15). Moreover, our restriction (10) for the number m of local processors in
Corollary 4 is more general than (16) when α is close to 1/2: with r = 1/2 corresponding

to the condition fρ ∈ HK , our restriction (10) in Corollary 4 is m ≤ N
1

4+6α with the power

index tending to 1
7 while the restriction in (16) with k =∞ takes the form m ≤ cα

N
2α−1
2α+1

A4 logN

with the power index tending to 0 as α→ 1
2 . Note that the learning rates stated in Corollary

4 are for the difference fD,λ − fD,λ between the output function of the distributed learning
algorithm (2) and that of the algorithm (1) using the whole data. In the special case of

r = 1
2 , we can see that E

∥∥fD,λ − fD,λ∥∥ρ ≤ C̃κ,c,rN
− α

2α+1m−
1

4α+2 , achieved by choosing

λ =
(
m
N

) 2α
2α+1 , is smaller as m becomes larger. Here the dependence of λ on m is crucial for

achieving this convergence rate of the sample error: if we fix λ and N , the error bounds for
E
∥∥fD,λ − fD,λ∥∥ stated in Theorem 1 and Corollary 3 become larger as m increases. On

the other hand, as one expects, increasing the number m of local processors would increase

10
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the approximation error for the regression problem, which can also be seen from the bound

with λ =
(
m
N

) 2α
2α+1 stated in Theorem 7. The result in Corollary 11 with r > 1

2 compensates

and gives the optimal learning rate E
[∥∥fD,λ − fρ∥∥ρ] = O

(
N−

2rα
4αr+1

)
by restricting m as

in (13).

Besides the divide-and-conquer technique, there are many other approaches in the lit-
erature to reduce the computational complexity in handling big data. These include the
localized learning (Meister and Steinwart, 2016), Nyström regularization (Bach, 2013; Rudi
et al., 2015), and online learning (Dekel et al., 2012). The divide-and-conquer technique has
the advantage of reducing the single-machine complexity of both space and time without a
significant lost of prediction power.

It is an important and interesting problem how the big data are decomposed for dis-
tributed learning. Here we only study the approach of random decomposition, and the data
subsets are regarded as being drawn from the same distribution. There should be better de-
composition strategies for some practical applications. For example, intuitively data points
should be divided according to their spatial distribution so that the learning process would
yield locally optimal predictors, which could then be synthesized to the output function.
See (Thomann et al., 2016).

In this paper, we consider the regularized least squares with Mercer kernels. Our results
might be extended to more general kernels. A natural class consists of bounded and positive
semidefinite kernels as studied in (Steinwart and Scovel, 2012). By means of the Mercer

type expansion (17), one needs some assumptions on the system {ϕi(x)√
λi
}i, the domain X ,

and the measure ρX to relax the continuity of the kernel while keeping compactness of
the integral operator. How to minimize the assumptions and to maximize the scope of
applications of the framework such as the situation of an input space X without a metric
(Shen et al., 2014; De Vito et al., 2013) is a valuable question to investigate.

Here we only consider distributed learning with the regularized least squares. It would
be of great interest and value to develop the theory for distributed learning with other
algorithms such as spectral algorithms (Bauer et al., 2007), empirical feature-based learning
(Guo and Zhou, 2012; Guo et al., 2017; Shi et al., 2011), the minimum error entropy principle
(Hu et al., 2015; Fan et al., 2016), and randomized Kaczmarz algorithms (Lin and Zhou,
2015).

Remark 15 After the submission of this paper, in our follow-up paper by Z. C. Guo, S.
B. Lin, and D. X. Zhou entitled “Learning theory of distributed spectral algorithms” pub-
lished in Inverse Problems, error analysis and optimal learning rates for distributed learning
with spectral algorithms were derived. In late 2016, we learned that similar analysis was
carried out for classical (non-distributed) spectral algorithms implemented in one machine
by G. Blanchard and N. Mücke in a paper entitled “Optimal rates for regularization of s-
tatistical inverse learning problems” (arXiv:1604.04054, April 2016), and by L. H. Dicker,
D. P. Foster, and D. Hsu in a paper entitled “Kernel ridge vs. principal component regres-
sion: minimax bounds and adaptibility of regularization operators” (arXiv:1605.08839, May
2016). We are indebted to one of the referees for pointing this out to us.
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4. Second Order Decomposition of Operator Differences and Norms

Our error estimates are achieved by a novel second order decomposition of operator dif-
ferences in our integral operator approach. We approximate the integral operator LK by
the empirical integral operator LK,D(x) on HK defined with the input data set D(x) =

{xi}Ni=1 = {x : (x, y) ∈ D for some y ∈ Y} as

LK,D(x)(f) =
1

|D|
∑

x∈D(x)

f(x)Kx =
1

|D|
∑

x∈D(x)

〈f,Kx〉KKx, f ∈ HK , (19)

where the reproducing property f(x) = 〈f,Kx〉K for f ∈ HK is used. Since K is a Mercer
kernel, LK,Dj(x) is a finite-rank positive operator and LK,Dj(x) + λI is invertible.

The operator difference in our study is that of the inverses of two operators defined by

QD(x) =
(
LK,D(x) + λI

)−1 − (LK + λI)−1 . (20)

If we denote A = LK,D(x) + λI and B = LK + λI, then our second order decomposition for
the operator difference QD(x) is a special case of the following second order decomposition
for the difference A−1 −B−1.

Lemma 16 Let A and B be invertible operators on a Banach space. Then we have

A−1 −B−1 = B−1 {B −A}B−1 +B−1 {B −A}A−1 {B −A}B−1. (21)

Proof We can decompose the operator A−1 −B−1 as

A−1 −B−1 = B−1 {B −A}A−1. (22)

This is the first order decomposition.
Write the last term A−1 as B−1 + (A−1−B−1) and apply another first order decompo-

sition similar to (22) as
A−1 −B−1 = A−1 {B −A}B−1.

It follows from (22) that

A−1 −B−1 = B−1 {B −A}
{
B−1 +A−1 {B −A}B−1

}
.

Then the desired identity (21) is verified. The lemma is proved.

To demonstrate how the second order decomposition leads to tight error bounds for the
classical least squares regularization scheme (1) with the output function fD,λ, we recall the
following formula (see e.g. (Caponnetto and De Vito, 2007; Smale and Zhou, 2007))

fD,λ − fλ =
(
LK,D(x) + λI

)−1
∆D, ∆D :=

1

|D|
∑
z∈D

ξλ(z)− E[ξλ], (23)

where ∆D is induced by the random variables ξλ with values in the Hilbert spaceHK defined
as

ξλ(z) = (y − fλ(x))Kx, z = (x, y) ∈ Z. (24)

12
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Then we can express fD,λ − fλ by means of the notation QD(x) =
(
LK,D(x) + λI

)−1 −
(LK + λI)−1 as

fD,λ − fλ =
[
QD(x)

]
∆D + (LK + λI)−1 ∆D.

Due to the identity between the L2
ρX

norm and the HK metric

‖g‖ρ = ‖L
1
2
Kg‖K , ∀g ∈ L2

ρX
, (25)

we can estimate the error ‖fD,λ − fλ‖ρ = ‖L
1
2
K (fD,λ − fλ) ‖K by bounding the HK norm of

the following expression obtained from the second order decomposition (21) with B −A =
LK − LK,D(x)

L
1
2
K

[
QD(x)

]
∆D =

{
L

1
2
K (LK + λI)−

1
2

}{
(LK + λI)−

1
2
{
LK − LK,D(x)

}}
(LK + λI)−1 ∆D

+

{
L

1
2
K (LK + λI)−

1
2

}{
(LK + λI)−

1
2
{
LK − LK,D(x)

}} (
LK,D(x) + λI

)−1
{{
LK − LK,D(x)

}
(LK + λI)−

1
2

}{
(LK + λI)−

1
2 ∆D

}
.

Combining this expression with the operator norm bound

∥∥∥∥L 1
2
K (LK + λI)−

1
2

∥∥∥∥ ≤ 1 and the

notation

ΞD =
∥∥∥(LK + λI)−

1
2
{
LK − LK,D(x)

}∥∥∥ (26)

for convenience, we find∥∥∥∥L 1
2
K

[
QD(x)

]
∆D

∥∥∥∥
K

≤ ΞD

∥∥∥(LK + λI)−1 ∆D

∥∥∥
K

+ ΞD

∥∥∥(LK,D(x) + λI
)−1∥∥∥

ΞD

∥∥∥(LK + λI)−
1
2 ∆D

∥∥∥
K
.

By decomposing (LK + λI)−1 ∆D as (LK + λI)−
1
2 (LK + λI)−

1
2 ∆D and using the bounds∥∥∥(LK,D(x) + λI

)−1∥∥∥ ≤ 1
λ ,
∥∥∥(LK + λI)−

1
2

∥∥∥ ≤ 1/
√
λ, we know that∥∥∥∥L 1

2
K

[
QD(x)

]
∆D

∥∥∥∥
K

≤
(

ΞD√
λ

+
Ξ2
D

λ

)∥∥∥(LK + λI)−
1
2 ∆D

∥∥∥
K

(27)

and

‖fD,λ − fλ‖ρ ≤
(

ΞD√
λ

+
Ξ2
D

λ
+ 1

)∥∥∥(LK + λI)−
1
2 ∆D

∥∥∥
K
. (28)

Thus the classical least squares regularization scheme (1) can be analyzed after esti-

mating the operator norm ΞD =
∥∥∥(LK + λI)−

1
2
{
LK − LK,D(x)

}∥∥∥ and the function norm∥∥∥(LK + λI)−
1
2 ∆D

∥∥∥
K

. In the following two lemmas, to be proved in the appendix, these

norms are estimated in terms of effective dimensions by methods in the existing literature
(Caponnetto and De Vito, 2007; Bauer et al., 2007; Blanchard and Krämer, 2010).
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Lemma 17 Let D be a sample drawn independently according to ρ. Then the following

estimates for the operator norm
∥∥∥(LK + λI)−

1
2
{
LK − LK,D(x)

}∥∥∥ hold.

(a) E

[∥∥∥(LK + λI)−
1
2
{
LK − LK,D(x)

}∥∥∥2] ≤ κ2N (λ)
|D| .

(b) For any 0 < δ < 1, with confidence at least 1− δ, there holds∥∥∥(LK + λI)−
1
2
{
LK − LK,D(x)

}∥∥∥ ≤ B|D|,λ log(2/δ), (29)

where we denote the quantity

B|D|,λ =
2κ√
|D|

{
κ√
|D|λ

+
√
N (λ)

}
. (30)

(c) For any d > 1, there holds{
E

[∥∥∥(LK + λI)−
1
2
{
LK − LK,D(x)

}∥∥∥d]} 1
d

≤ (2dΓ(d) + 1)
1
dB|D|,λ,

where Γ is the Gamma function defined for d > 0 by Γ(d) =
∫∞
0 ud−1 exp {−u} du.

Lemma 18 Let D be a sample drawn independently according to ρ and g be a measurable
bounded function on Z and ξg be the random variable with values in HK defined by ξg(z) =
g(z)Kx for z = (x, y) ∈ Z. Then the following statements hold.

(a) E

[∥∥∥(LK + λI)−1/2 (Kx)
∥∥∥2
K

]
= N (λ).

(b) For almost every x ∈ X , there holds
∥∥∥(LK + λI)−1/2 (Kx)

∥∥∥
K
≤ κ√

λ
.

(c) For any 0 < δ < 1, with confidence at least 1− δ, there holds∥∥∥∥∥(LK + λI)−1/2
(

1

|D|
∑
z∈D

ξg(z)− E [ξg]

)∥∥∥∥∥
K

≤ 2‖g‖∞ log(2/δ)√
|D|

{
κ√
|D|λ

+
√
N (λ)

}
.

Remark 19 In the existing literature, the first order decomposition (22) was used. To

bound the norm of
(
LK,D(x) + λI

)−1
∆D by this approach, one needs to either use the brute

force estimate
∥∥∥(LK,D(x) + λI

)−1∥∥∥ ≤ 1
λ leading to suboptimal learning rates, or applying the

approximation of LK by LK,D(x) which is valid only with confidence and leads to confidence-
based estimates with λ depending on the confidence level. In our second order decomposition,
we decompose the inverse operator

(
LK,D(x) + λI

)−1
further after the first order decompo-

sition (22). This leads to finer estimates with an additional factor ‖(B − A)B−
1
2 ‖ in the

second term of the bound (21) and gives the refined error bound (28).
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5. Deriving Error Bounds for Least Squares Regularization Scheme

In this section we prove our main result on error bounds for the least squares regularization
scheme (1), which illustrates how to apply the second order decomposition (21) for operator
differences in our integral operator approach.

Proposition 20 Assume E[y2] < ∞ and moment condition (11) for some 1 ≤ p ≤ ∞.
Then

E
[
‖fD,λ − fλ‖ρ

]
≤

(
2 + 56κ4 + 57κ2

)(
1 +

1

(|D|λ)2
+
N (λ)

|D|λ

)
{
κ

1
p

√∥∥σ2ρ∥∥p(N (λ)

|D|

) 1
2
(1− 1

p
)( 1

|D|λ

) 1
2p

+ κ
‖fλ − fρ‖ρ√
|D|λ

}
.

Proof We apply the error bound (28) and the Schwarz inequality to get

E
[
‖fD,λ − fλ‖ρ

]
≤

{
E

[(
1 +

ΞD√
λ

+
Ξ2
D

λ

)2
]}1/2{

E

[∥∥∥(LK + λI)−1/2 ∆D

∥∥∥2
K

]}1/2

.

(31)

The first factor in the above bound involves ΞD =
∥∥∥(LK + λI)−

1
2
{
LK − LK,D(x)

}∥∥∥ and

it can be estimated by applying Lemma 17 as{
E

[(
1 +

ΞD√
λ

+
Ξ2
D

λ

)2
]}1/2

≤ 1 +

{
E

[
Ξ2
D

λ

]}1/2

+

{
E

[
Ξ4
D

λ2

]}1/2

≤ 1 +

{
κ2N (λ)

|D|λ

}1/2

+

{
49B4|D|,λ
λ2

}1/2

≤ 2 +
56κ4

(|D|λ)2
+

57κ2N (λ)

|D|λ
. (32)

To deal with the factor in the bound (31), we separate ∆D = 1
|D|
∑

z∈D ξλ(z)−E[ξλ] as

∆D = ∆′D + ∆′′D,

where

∆′D :=
1

|D|
∑
z∈D

ξ0(z), ∆′′D :=
1

|D|
∑
z∈D

(ξλ − ξ0) (z)− E[ξλ]

are induced by another random variable ξ0 with values in the Hilbert space HK defined by

ξ0(z) = (y − fρ(x))Kx, z = (x, y) ∈ Z. (33)

Then the second factor in (31) can be separated as{
E

[∥∥∥(LK + λI)−1/2 ∆D

∥∥∥2
K

]}1/2

≤
{
E

[∥∥∥(LK + λI)−1/2 ∆′D

∥∥∥2
K

]}1/2

+

{
E

[∥∥∥(LK + λI)−1/2 ∆′′D

∥∥∥2
K

]}1/2

. (34)

15



Lin, Guo and Zhou

Let us bound the first term of (34). Observe that

(LK + λI)−1/2 ∆′D =
∑
z∈D

1

|D|
(y − fρ(x)) (LK + λI)−1/2 (Kx).

Each term in this expression is unbiased because
∫
Y (y − fρ(x)) dρ(y|x) = 0. This unbiased-

ness and the independence tell us that{
E

[∥∥∥(LK + λI)−1/2 ∆′D

∥∥∥2
K

]}1/2

=

{
1

|D|
E

[∥∥∥(y − fρ(x))
[
(LK + λI)−1/2

]
(Kx)

∥∥∥2
K

]}1/2

=

{
1

|D|
E

[
σ2ρ(x)

∥∥∥[(LK + λI)−1/2
]

(Kx)
∥∥∥2
K

]}1/2

. (35)

If σ2ρ ∈ L∞, then σ2ρ(x) ≤
∥∥σ2ρ∥∥∞ and by Lemma 18 we have

{
E

[∥∥∥(LK + λI)−1/2 ∆′D

∥∥∥2
K

]}1/2

≤
√∥∥σ2ρ∥∥∞√N (λ)/|D|.

If σ2ρ ∈ LpρX with 1 ≤ p < ∞, we take q = p
p−1 (q = ∞ for p = 1) satisfying 1

p +
1
q = 1 and apply the Hölder inequality E[|ξη|] ≤ (E[|ξ|p])1/p (E[|η|q])1/q to ξ = σ2ρ, η =∥∥∥∥(LK + λI)−1/2 (Kx)

∥∥∥∥2
K

to find

E

[
σ2ρ(x)

∥∥∥[(LK + λI)−1/2
]

(Kx)
∥∥∥2
K

]
≤
∥∥σ2ρ∥∥p{E [∥∥∥[(LK + λI)−1/2

]
(Kx)

∥∥∥2q
K

]}1/q

.

But ∥∥∥[(LK + λI)−1/2
]

(Kx)
∥∥∥2q−2
K

≤
(
κ/
√
λ
)2q−2

and E

[∥∥∥∥(LK + λI)−1/2 (Kx)

∥∥∥∥2
K

]
= N (λ) by Lemma 18. So we have

{
E

[∥∥∥(LK + λI)−1/2 ∆′D

∥∥∥2
K

]}1/2

≤

{
1

|D|
∥∥σ2ρ∥∥p{κ2q−2λq−1

N (λ)

}1/q
}1/2

=
√∥∥σ2ρ∥∥pκ 1

p

(
N (λ)

|D|

) 1
2
(1− 1

p
)( 1

|D|λ

) 1
2p

.

Combining the above two cases, we know that for either p =∞ or p <∞, the first term of
(34) can be bounded as

{
E

[∥∥∥(LK + λI)−1/2 ∆′D

∥∥∥2
K

]}1/2

≤
√∥∥σ2ρ∥∥pκ 1

p

(
N (λ)

|D|

) 1
2
(1− 1

p
)( 1

|D|λ

) 1
2p

.
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The second term of (34) can be bounded easily as{
E

[∥∥∥(LK + λI)−1/2 ∆′′D

∥∥∥2
K

]}1/2

≤ 1√
|D|

{
E

[
(fρ(x)− fλ(x))2

∥∥∥(LK + λI)−1/2 (Kx)
∥∥∥2
K

]}1/2

≤ 1√
|D|

{
E

[
(fρ(x)− fλ(x))2

κ2

λ

]}1/2

=
κ‖fρ − fλ‖ρ√

|D|λ
.

Putting the above estimates for the two terms of (34) into (31) and applying the bound

(32) involving ΞD, we know that E
[
‖fD,λ − fλ‖ρ

]
is bounded by

(
2 +

56κ4

(|D|λ)2
+

57κ2N (λ)

|D|λ

)(√∥∥σ2ρ∥∥pκ 1
p

(
N (λ)

|D|

) 1
2
(1− 1

p
)( 1

|D|λ

) 1
2p

+
κ‖fρ − fλ‖ρ√

|D|λ

)
.

Then our desired error bound follows. The proof of the proposition is complete.

Proof of Theorem 7 Combining Proposition 20 with the triangle inequality ‖fD,λ−fρ‖ρ ≤
‖fD,λ − fλ‖ρ + ‖fλ − fρ‖ρ, we know that

E
[
‖fD,λ − fρ‖ρ

]
≤ ‖fλ − fρ‖ρ +

(
2 + 56κ4 + 57κ2

)(
1 +

1

(|D|λ)2
+
N (λ)

|D|λ

)
{
κ

1
p

√∥∥σ2ρ∥∥p(N (λ)

|D|

) 1
2
(1− 1

p
)( 1

|D|λ

) 1
2p

+
κ√
|D|λ

‖fλ − fρ‖ρ

}
.

Then the desired error bound holds true, and the proof of Theorem 7 is complete.

Proof of Corollary 8 By the definition of effective dimension,

N (λ) =
∑
`

λ`
λ` + λ

≥ λ1
λ1 + λ

.

Combining this with the restriction (8) with m = 1, we find N (λ) ≥ λ1
λ1+C0

and Nλ ≥
λ1

(λ1+C0)C0
. Putting these and the restriction (8) with m = 1 into the error bound (12), we

know that

E
[
‖fD,λ − fρ‖ρ

]
≤
(
2 + 56κ4 + 57κ2

)
(1 + κ)

(
1 +

(λ1 + C0)
2C2

0

λ21
+ C0

)
{(

1 +
√

(λ1 + C0)C0/λ1

)
‖fλ − fρ‖ρ +

√∥∥σ2ρ∥∥p(N (λ)

N

) 1
2
(1− 1

p
)( 1

Nλ

) 1
2p
}
.

Then the desired bound follows. The proof of Corollary 8 is complete.

To prove Corollary 9, we need the following bounds (Smale and Zhou, 2007) for ‖fλ−fρ‖ρ
and ‖fλ − fρ‖K .
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Lemma 21 Assume regularity condition (9) with 0 < r ≤ 1. There holds

‖fλ − fρ‖ρ ≤ λr‖gρ‖ρ. (36)

Furthermore, if 1/2 ≤ r ≤ 1, then we have

‖fλ − fρ‖K ≤ λr−1/2‖gρ‖ρ. (37)

Proof of Corollary 9 By Lemma 21, regularity condition (9) with 0 < r ≤ 1 implies

‖fλ − fρ‖ρ ≤ λr‖gρ‖ρ.

If

N (λ) ≤ C0λ
− 1

2α , ∀λ > 0

for some constant C0 ≥ 1, then the choice λ = N
− 2α

2αmax{2r,1}+1 yields

N (λ)

Nλ
≤ C0λ

− 1
2α
−1

N
= C0N

2α+1
2αmax{2r,1}+1

−1 ≤ C0.

So (8) with m = 1 is satisfied. With this choice we also have(
N (λ)

N

) 1
2
(1− 1

p
)( 1

Nλ

) 1
2p

≤ C
1
2
(1− 1

p
)

0 N
− 2αmax{2r,1}

2αmax{2r,1}+1
1
2
(1− 1

p
)
N
− 2αmax{2r,1}+1−2α

2αmax{2r,1}+1
1
2p

= C
1
2
(1− 1

p
)

0 N
− αmax{2r,1}

2αmax{2r,1}+1
+ 1

2p
2α−1

2αmax{2r,1}+1 .

Putting these estimates into Corollary 8, we know that

E
[
‖fD,λ − fρ‖ρ

]
= O

(
N
− 2αr

2αmax{2r,1}+1 +N
− αmax{2r,1}

2αmax{2r,1}+1
+ 1

2p
2α−1

2αmax{2r,1}+1

)
= O

(
N
−αmin{2r,max{2r,1}}

2αmax{2r,1}+1
+ 1

2p
2α−1

2αmax{2r,1}+1

)
.

But we find

min {2r,max{2r, 1}} = 2r

by discussing the two different cases 0 < r < 1
2 and 1

2 ≤ r ≤ 1. Then our conclusion follows
immediately. The proof of Corollary 9 is complete.

6. Proof of Error Bounds for the Distributed Learning Algorithm

To analyze the error fD,λ − fD,λ for distributed learning, we recall the notation QD(x) =(
LK,D(x) + λI

)−1−(LK + λI)−1 for the difference of inverse operators and use the notation
QDj(x) involving the data subset Dj . The empirical integral operator LK,Dj(x) is defined
with D replaced by the data subset Dj . For our error analysis for the distributed learning
algorithm (2), we need the following error decomposition for fD,λ − fD,λ.
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Lemma 22 Assume E[y2] <∞. For λ > 0, we have

fD,λ − fD,λ =
m∑
j=1

|Dj |
|D|

[(
LK,Dj(x) + λI

)−1
−
(
LK,D(x) + λI

)−1]
∆j

=

m∑
j=1

|Dj |
|D|

[
QDj(x)

]
∆′j +

m∑
j=1

|Dj |
|D|

[
QDj(x)

]
∆′′j −

[
QD(x)

]
∆D, (38)

where

∆j :=
1

|Dj |
∑
z∈Dj

ξλ(z)− E[ξλ], ∆D :=
1

|D|
∑
z∈D

ξλ(z)− E[ξλ],

and

∆′j :=
1

|Dj |
∑
z∈Dj

ξ0(z), ∆′′j :=
1

|Dj |
∑
z∈Dj

(ξλ − ξ0) (z)− E[ξλ].

Proof Recall the expression (23) for fD,λ− fλ. When the data subset Dj is used, we have

fDj ,λ − fλ =
(
LK,Dj(x) + λI

)−1
∆j .

So we know that

fD,λ − fλ =
m∑
j=1

|Dj |
|D|

{
fDj ,λ − fλ

}
=

m∑
j=1

|Dj |
|D|

(
LK,Dj(x) + λI

)−1
∆j .

We can decompose ∆D as

∆D =
1

|D|
∑
z∈D

ξλ(z)− E[ξλ] =

m∑
j=1

|Dj |
|D|

 1

|Dj |
∑
z∈Dj

ξλ(z)− E[ξλ]

 =

m∑
j=1

|Dj |
|D|

∆j

in the expression (23) for fD,λ − fλ and find

fD,λ − fλ =
m∑
j=1

|Dj |
|D|

(
LK,D(x) + λI

)−1
∆j .

Then the first desired expression for fD,λ − fD,λ follows.

By adding and subtracting the operator (LK + λI)−1, writing ∆j = ∆′j+∆′′j , and noting
E[ξ0] = 0, we know that the first expression implies (38). This proves Lemma 22.

Before proving our first main result on the error fD,λ − fD,λ in the HK metric and
L2
ρ metric, we state the following more general result which allows different sizes for data

subsets {Dj}.
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Theorem 23 Assume that for some constant M > 0, |y| ≤ M almost surely. Then we
have

E
[∥∥fD,λ − fD,λ∥∥ρ] ≤ C ′κM√λ


m∑
j=1

(
|Dj |
|D|

)2 (
S2|Dj |,λ + S3|Dj |,λ

)
1
2

+ C ′κ

m∑
j=1

|Dj |
|D|

‖fρ − fλ‖ρ√
|Dj |λ

(√
N (λ)

|Dj |λ
+ S|Dj |,λ

)
+ C ′κ

(√
N (λ)

|D|λ
+ S|D|,λ

)(
M

√
N (λ)

|D|
+
‖fρ − fλ‖ρ√
|D|λ

)

and

E
[∥∥fD,λ − fD,λ∥∥K] ≤ C ′κM


m∑
j=1

(
|Dj |
|D|

)2 (
S2|Dj |,λ + S3|Dj |,λ

)
1
2

+ C ′κ

m∑
j=1

|Dj |
|D|

‖fρ − fλ‖ρ√
|Dj |λ

(√
N (λ)

|Dj |λ
+ S|Dj |,λ

)
+ C ′κ

(√
N (λ)

|D|λ
+ S|D|,λ

)(
M

√
N (λ)

|D|λ
+
‖fρ − fλ‖ρ√
|D|λ

)
,

where C ′κ is a constant depending only on κ, and S|Dj |,λ is the quantity given by

S|Dj |,λ =
1

|Dj |2λ2
+
N (λ)

|Dj |λ
.

Proof Recall the expression (38) for fD,λ − fD,λ in Lemma 22. It enables us to express

L
1/2
K

{
fD,λ − fD,λ

}
= J1 + J2 + J3, (39)

where the terms J1, J2, J3 are given by

J1 =

m∑
j=1

|Dj |
|D|

[
L
1/2
K QDj(x)

]
∆′j , J2 =

m∑
j=1

|Dj |
|D|

[
L
1/2
K QDj(x)

]
∆′′j , J3 = −

[
L
1/2
K QD(x)

]
∆D.

These three terms will be dealt with separately in the following.

For the first term J1 of (39), each summand with j ∈ {1, . . . ,m} can be expressed as∑
z∈Dj

1
|D|(y − fρ(x))

[
L
1/2
K QDj(x)

]
(Kx), and is unbiased because

∫
Y y − fρ(x)dρ(y|x) = 0.

The unbiasedness and the independence tell us that

E [‖J1‖K ] ≤
{
E
[
‖J1‖2K

]}1/2
≤


m∑
j=1

(
|Dj |
|D|

)2

E

[∥∥∥[L1/2
K QDj(x)

]
∆′j

∥∥∥2
K

]
1/2

. (40)

Let j ∈ {1, . . . ,m}. The estimate (27) derived from the second order decomposition (21)
yields ∥∥∥[L1/2

K QDj(x)

]
∆′j

∥∥∥2
K
≤

(
ΞDj√
λ

+
Ξ2
Dj

λ

)2 ∥∥∥(LK + λI)−1/2 ∆′j

∥∥∥2
K
. (41)

20



Distributed Learning

Now we apply the formula

E[ξ] =

∫ ∞
0

Prob [ξ > t] dt (42)

to estimate the expected value of (41). By Part (b) of Lemma 17, for 0 < δ < 1, there

exists a subset Z |Dj |δ,1 of Z |Dj | of measure at least 1− δ such that

ΞDj ≤ B|Dj |,λ log(2/δ), ∀Dj ∈ Z
|Dj |
δ,1 . (43)

Applying Part (c) of Lemma 18 to g(z) = y − fρ(x) with ‖g‖∞ ≤ 2M and the data subset

Dj , we know that there exists another subset Z |Dj |δ,2 of Z |Dj | of measure at least 1− δ such
that ∥∥∥(LK + λI)−1/2 ∆′j

∥∥∥
K
≤ 2M

κ
B|Dj |,λ log(2/δ), ∀Dj ∈ Z

|Dj |
δ,2 .

Combining this with (43) and (41), we know that for Dj ∈ Z
|Dj |
δ,1 ∩ Z

|Dj |
δ,2 ,

∥∥∥[L1/2
K QDj(x)

]
∆′j

∥∥∥2
K
≤

(
B2|Dj |,λ
λ

+
B4|Dj |,λ
λ2

)(
M

κ

)2

B2|Dj |,λ (2 log(2/δ))6 .

Since the measure of the set Z |Dj |δ,1 ∩ Z
|Dj |
δ,2 is at least 1− 2δ, by denoting

C|Dj |,λ = 64

(
B2|Dj |,λ
λ

+
B4|Dj |,λ
λ2

)(
M

κ

)2

B2|Dj |,λ,

we see that

Prob

[∥∥∥[L1/2
K QDj(x)

]
∆′j

∥∥∥2
K
> C|Dj |,λ (log(2/δ))6

]
≤ 2δ.

For 0 < t <∞, the equation C|Dj |,λ (log(2/δ))6 = t has the solution

δt = 2 exp

{
−
(
t/C|Dj |,λ

)1/6}
.

When δt < 1, we have

Prob

[∥∥∥[L1/2
K QDj(x)

]
∆′j

∥∥∥2
K
> t

]
≤ 2δt = 4 exp

{
−
(
t/C|Dj |,λ

)1/6}
.

This inequality holds trivially when δt ≥ 1 since the probability is at most 1. Thus we can

apply the formula (42) to the nonnegative random variable ξ =
∥∥∥[L1/2

K QDj(x)

]
∆′j

∥∥∥2
K

and

obtain

E

[∥∥∥[L1/2
K QDj(x)

]
∆′j

∥∥∥2
K

]
=

∫ ∞
0

Prob [ξ > t] dt ≤
∫ ∞
0

4 exp

{
−
(
t/C|Dj |,λ

)1/6}
dt
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which equals 24Γ(6)C|Dj |,λ. Therefore,

E [‖J1‖K ] ≤


m∑
j=1

(
|Dj |
|D|

)2

24Γ(6)C|Dj |,λ


1/2

≤ 1536
√

5κM


m∑
j=1

(
|Dj |
|D|

)2

λ

(
κ2

|Dj |2λ2
+
N (λ)

|Dj |λ

)2{
1 + 8κ2

(
κ2

|Dj |2λ2
+
N (λ)

|Dj |λ

)}
1/2

.

For the second term J2 of (39), we apply (27) again and obtain∥∥∥[L1/2
K QDj(x)

]
∆′′j

∥∥∥
K
≤

(
ΞDj√
λ

+
Ξ2
Dj

λ

)∥∥∥(LK + λI)−1/2 ∆′′j

∥∥∥
K
.

Applying the Schwarz inequality and Lemmas 17 and 18, we get

E
[∥∥∥[L1/2

K QDj(x)

]
∆′′j

∥∥∥
K

]
≤

E
(ΞDj√

λ
+

Ξ2
Dj

λ

)2


1/2

1√
|Dj |

{
E

[
(fρ(x)− fλ(x))2

∥∥∥(LK + λI)−1/2 (Kx)
∥∥∥2
K

]}1/2

≤

{κ2N (λ)

|Dj |λ

}1/2

+

{
49B4|Dj |,λ

λ2

}1/2
 κ‖fρ − fλ‖ρ√

|Dj |λ

≤

(
κ

√
N (λ)

|Dj |λ
+ 56κ2

(
κ2

(|Dj |λ)2
+
N (λ)

|Dj |λ

))
κ‖fρ − fλ‖ρ√
|Dj |λ

.

It follows that

E [‖J2‖K ] ≤
m∑
j=1

|Dj |
|D|

κ‖fρ − fλ‖ρ√
|Dj |λ

(
κ

√
N (λ)

|Dj |λ
+ 56κ2

(
κ2

(|Dj |λ)2
+
N (λ)

|Dj |λ

))
.

The last term J3 of (39) has been handled by (27) and in the proof of Proposition
20 by ignoring the summand 1 in the bound (31), and we find from the trivial bound∥∥σ2ρ∥∥∞ ≤ 4M2 with p =∞ that

E [‖J3‖K ] ≤

(
κ

√
N (λ)

|D|λ
+ 56κ2

(
κ2

(|D|λ)2
+
N (λ)

|D|λ

))(
2M

(
N (λ)

|D|

) 1
2

+
κ‖fρ − fλ‖ρ√

|D|λ

)
.

Combining the above estimates for the three terms of (39), we see that the desired error
bound in the L2

ρX
metric holds true.

The estimate in the HK metric follows from the steps in deriving the error bound in the

L2
ρX

metric except that in the representation (39) the operator L
1/2
K in the front disappears.

This change gives an additional factor 1/
√
λ, the bound for the operator (LK + λI)−1/2,

and proves the desired error bound in the HK metric.
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Remark 24 A crucial step in the above error analysis for the distributed learning algo-
rithm is to use the unbiasedness and independence to get (40) where the norm is squared
in the expected value. Thus we can obtain the optimal learning rates in expectation for
the distributed learning algorithm (2) but have difficulty in getting rates in probability. It
would be interesting to derive error bounds in probability by combining our second order de-
composition technique with some analysis in the literature (Caponnetto and De Vito, 2007;
Blanchard and Krämer, 2010; Steinwart and Christmann, 2008; Wu and Zhou, 2008).

Proof of Theorem 1 Since |Dj | = N
m for j = 1, . . . ,m, the bound in Theorem 23 in the

L2
ρX

metric can be simplified as

E
[∥∥fD,λ − fD,λ∥∥ρ] ≤ C ′κM√λ√m( m

(Nλ)2
+
N (λ)

Nλ

){
1 +
√
m

(
m

(Nλ)2
+
N (λ)

Nλ

) 1
2

}

+C ′κ
‖fρ − fλ‖ρ√

Nλ
m

(√
N (λ)

Nλ
+
m
√
m

(Nλ)2
+

√
mN (λ)

Nλ

)

+C ′κ

(
‖fρ − fλ‖ρ√

Nλ
+M

√
N (λ)

N

)(√
N (λ)

Nλ
+

1

(Nλ)2
+
N (λ)

Nλ

)

≤ C ′κM(
√
m+ 1)

√
λ

(
m

(Nλ)2
+
N (λ)

Nλ

){
1 +
√
m

(
m

(Nλ)2
+
N (λ)

Nλ

) 1
2

}

+C ′κ
‖fρ − fλ‖ρ√

Nλ
(m+ 1)

(√
N (λ)

Nλ
+
m
√
m

(Nλ)2
+

√
mN (λ)

Nλ

)

≤ 2C ′κM
√
λCm

{√
m+m

√
Cm
}

+ 2C ′κ
‖fρ − fλ‖ρ√

Nλ
m

(√
N (λ)

Nλ
+
√
mCm

)
.

Then the desired error bound in the L2
ρX

metric with Cκ = 2C ′κ follows. The proof for the
error bound in the HK metric is similar. The proof of Theorem 1 is complete.

Proof of Corollary 3 As in the proof of Corollary 8, the restriction (8) implies N (λ) ≥
λ1

λ1+C0
and Nλ ≥ mλ1

(λ1+C0)C0
. It follows that

m

(Nλ)2
≤ (λ1 + C0)C0

λ1

1

Nλ
≤ (λ1 + C0)

2C0

λ21

N (λ)

Nλ

and with C̃ ′κ := (λ1+C0)2C0

λ21
+ 1,

Cm ≤ C̃ ′κ
N (λ)

Nλ
.

Putting these bounds into Theorem 1 and applying the restriction mN (λ)
Nλ ≤ C0, we know

that

E
∥∥fD,λ − fD,λ∥∥ρ ≤ Cκ

(
C̃ ′κ

) 3
2

√
N (λ)

Nλ

(
1 +

√
mN (λ)

Nλ

){
M

√
mN (λ)

N
+
m‖fρ − fλ‖ρ√

Nλ

}

≤ Cκ

(
C̃ ′κ

) 3
2
(

1 +
√
C0

)√N (λ)

Nλ

{
M
√
C0

√
λ+

m‖fρ − fλ‖ρ√
Nλ

}
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and

E
∥∥fD,λ − fD,λ∥∥K ≤ Cκ

(
C̃ ′κ

) 3
2
(

1 +
√
C0

)√N (λ)

Nλ

{
M
√
C0 +

m‖fρ − fλ‖ρ√
Nλ

}
.

Then the desired error bounds hold by taking the constant C̃κ = Cκ

(
C̃ ′κ

) 3
2 (

1 +
√
C0

)2
.

This proves Corollary 3.

Proof of Corollary 4 If

N (λ) ≤ C0λ
− 1

2α , ∀λ > 0

for some constant C0 ≥ 1, then the choice λ =
(
m
N

) 2α
2αmax{2r,1}+1 satisfies (8). With this

choice we also have

mN (λ)

Nλ
≤ C0

(m
N

) 2α(max{2r,1}−1)
2αmax{2r,1}+1

.

Since regularity condition (9) yields ‖fλ − fρ‖ρ ≤ ‖gρ‖ρλr by Lemma 21, we have by
Corollary 3,

E
∥∥fD,λ − fD,λ∥∥ρ ≤ C̃κ

√
C0

1√
m

(m
N

)α(max{2r,1}−1)
2αmax{2r,1}+1

(
‖gρ‖ρ

(m
N

) 2α
2αmax{2r,1}+1

(r− 1
2
) m√

N

+M
(m
N

) α
2αmax{2r,1}+1

)
.

The inequality
(
m
N

) 2α
2αmax{2r,1}+1

(r− 1
2
) m√

N
≤
(
m
N

) α
2αmax{2r,1}+1 is equivalent to

m
1+ 2α

2αmax{2r,1}+1
(r−1) ≤ N

1
2
+ 2α

2αmax{2r,1}+1
(r−1)

and it can be expressed as (10). Since (10) is valid, we have

E
∥∥fD,λ − fD,λ∥∥ρ ≤ C̃κ√C0

(
‖gρ‖ρ +M

)
1√
m

(m
N

) αmax{2r,1}
2αmax{2r,1}+1

.

This proves the first desired convergence rate. The second rate follows easily. This proves
Corollary 4.

Proof of Corollary 11 By Corollary 9, with the choice λ = N−
2α

4αr+1 , we can immediately
bound ‖fD,λ − fρ‖ρ as

E
[
‖fD,λ − fρ‖ρ

]
= O

(
N−

2αr
4αr+1

)
.

The assumption N (λ) = O(λ−
1
2α ) tells us that for some constant C0 ≥ 1,

N (λ) ≤ C0λ
− 1

2α , ∀λ > 0.

So the choice λ = N−
2α

4αr+1 yields

mN (λ)

Nλ
≤ C0

mλ−
1+2α
2α

N
= C0mN

1+2α
4αr+1

−1 = C0mN
2α(1−2r)
4αr+1 . (44)
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If m satisfies (13), then (8) is valid, and by Corollary 3,

E
∥∥fD,λ − fD,λ∥∥ρ ≤ C̃κ

√
C0N

α(1−2r)
4αr+1

(
λr‖gλ‖ρ

m√
Nλ

+M
√
λ

)

≤ C̃κ
√
C0

(
‖gλ‖ρ +M

)
λr

mN α(1−2r)
4αr+1

√
Nλ

+N
α(1−2r)
4αr+1 λ

1
2
−r


= C̃κ

√
C0

(
‖gλ‖ρ +M

)
N−

2αr
4αr+1

(
mN−

2α(2r−1)+1
2

4αr+1 + 1

)
.

Since (13) is satisfied, we have

E
∥∥fD,λ − fD,λ∥∥ρ ≤ 2C̃κ

√
C0

(
‖gλ‖ρ +M

)
N−

2αr
4αr+1 ,

and thereby

E
[∥∥fD,λ − fρ∥∥ρ] = O

(
N−

2αr
4αr+1

)
.

This proves Corollary 11.
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Appendix

This appendix provides detailed proofs of the norm estimates stated in Lemmas 17 and
18 involving the approximation of LK by LK,D(x). To this end, we need the following
probability inequality for vector-valued random variables in (Pinelis, 1994).

Lemma 25 For a random variable ξ on (Z, ρ) with values in a separable Hilbert space

(H, ‖ · ‖) satisfying ‖ξ‖ ≤ M̃ <∞ almost surely, and a random sample {zi}si=1 independent

drawn according to ρ, there holds with confidence 1− δ̃,

∥∥∥∥1

s

s∑
i=1

[ξ(zi)− E(ξ)]

∥∥∥∥ ≤ 2M̃ log(2/δ̃)

s
+

√
2E(‖ξ‖2) log(2/δ̃)

s
. (45)

Proof of Lemma 17 We apply Lemma 25 to the random variable η1 defined by

η1(x) = (LK + λI)−1/2 〈·,Kx〉KKx, x ∈ X (46)

It takes values in HS(HK), the Hilbert space of Hilbert-Schmidt operators on HK , with
inner product 〈A,B〉HS = Tr(BTA). Here Tr denotes the trace of a (trace-class) linear
operator. The norm is given by ‖A‖2HS =

∑
i ‖Aei‖2K where {ei} is an orthonormal basis
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of HK . The space HS(HK) is a subspace of the space of bounded linear operators on HK ,
denoted as (L(HK), ‖ · ‖), with the norm relations

‖A‖ ≤ ‖A‖HS , ‖AB‖HS ≤ ‖A‖HS‖B‖. (47)

Now we use effective dimensions to estimate norms involving η1. The random variable η1
defined by (46) has mean E(η1) = (LK + λI)−1/2 LK and sample mean (LK + λI)−1/2 LK,D(x).
Recall the set of normalized (in HK) eigenfunctions {ϕi}i of LK . It is an orthonormal basis
of HK . If we regard LK as an operator on L2

ρX
, the normalized eigenfunctions in L2

ρX

are { 1√
λi
ϕi}i and they form an orthonormal basis of the orthogonal complement of the

eigenspace associated with eigenvalue 0. By the Mercer Theorem, we have the following
uniform convergent Mercer expansion

K(x, y) =
∑
i

λi
1√
λi
ϕi(x)

1√
λi
ϕi(y) =

∑
i

ϕi(x)ϕi(y). (48)

Take the orthonormal basis {ϕi}i of HK . By the definition of the HS norm, we have

‖η1(x)‖2HS =
∑
i

∥∥∥(LK + λI)−1/2 〈·,Kx〉KKxϕi

∥∥∥2
K
.

For a fixed i,
〈·,Kx〉KKxϕi = ϕi(x)Kx,

and Kx ∈ HK can be expended by the orthonormal basis {ϕ`}` as

Kx =
∑
`

〈ϕ`,Kx〉Kϕ` =
∑
`

ϕ`(x)ϕ`. (49)

Hence

‖η1(x)‖2HS =
∑
i

∥∥∥∥∥ϕi(x)
∑
`

ϕ`(x) (LK + λI)−1/2 ϕ`

∥∥∥∥∥
2

K

=
∑
i

∥∥∥∥∥ϕi(x)
∑
`

ϕ`(x)
1√

λ` + λ
ϕ`

∥∥∥∥∥
2

K

=
∑
i

(ϕi(x))2
∑
`

(ϕ`(x))2

λ` + λ
.

Combining this with (48), we see that

‖η1(x)‖2HS = K(x, x)
∑
`

(ϕ`(x))2

λ` + λ
, ∀x ∈ X (50)

and

E
[
‖η1(x)‖2HS

]
≤ κ2E

[∑
`

(ϕ`(x))2

λ` + λ

]
= κ2

∑
`

∫
X (ϕ`(x))2 dρX

λ` + λ
.

But ∫
X

(ϕ`(x))2 dρX = ‖ϕ`‖2L2
ρX

=

∥∥∥∥√λ` 1√
λ`
ϕ`

∥∥∥∥2
L2
ρX

= λ`. (51)
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So we have

E
[
‖η1‖2HS

]
≤ κ2

∑
`

λ`
λ` + λ

= κ2Tr
(

(LK + λI)−1 LK

)
= κ2N (λ) (52)

and

E

∥∥∥∥∥∥ 1

|D|
∑

x∈D(x)

η1(x)− E[η1]

∥∥∥∥∥∥
2

HS

= E

[∥∥∥(LK + λI)−1/2
{
LK − LK,D(x)

}∥∥∥2
HS

]
≤ κ2N (λ)

|D|
.

Then our desired inequality in Part (a) follows from the first inequality of (47).
From (49) and (50), we find a bound for η1 as

‖η1(x)‖HS ≤ κ
1√
λ

√∑
`

(ϕ`(x))2 ≤ κ√
λ

√
K(x, x) ≤ κ2√

λ
, ∀x ∈ X .

Applying Lemma 25 to the random variable η1 with M̃ = κ2√
λ

, we know by (47) that with

confidence at least 1− δ,∥∥∥∥∥∥E[η1]−
1

|D|
∑

x∈D(x)

η1(x)

∥∥∥∥∥∥ ≤

∥∥∥∥∥∥E[η1]−
1

|D|
∑

x∈D(x)

η1(x)

∥∥∥∥∥∥
HS

≤ 2κ2 log(2/δ)

|D|
√
λ

+

√
2κ2N (λ) log(2/δ)

|D|
.

Writing the above bound by taking a factor
2κ log(2/δ)√

|D|
, we get the desired bound (29).

Recall B|D|,λ defined by (30). Apply the formula (42) for nonnegative random variables

to ξ =
∥∥∥(LK + λI)−1/2

{
LK − LK,D(x)

}∥∥∥d and use the bound

Prob [ξ > t] = Prob
[
ξ

1
d > t

1
d

]
≤ 2 exp

{
− t

1
d

B|D|,λ

}

derived from (29) for t ≥ logd 2B|D|,λ. We find

E

[∥∥∥(LK + λI)−1/2
{
LK − LK,D(x)

}∥∥∥d] ≤ logd 2B|D|,λ +

∫ ∞
0

2 exp

{
− t

1
d

B|D|,λ

}
dt.

The second term on the right-hand side of above equation equals 2dBd|D|,λ
∫∞
0 ud−1 exp {−u} du.

Then the desired bound in Part (c) follows from
∫∞
0 ud−1 exp {−u} du = Γ(d) and the lemma

is proved.

Proof of Lemma 18 Consider the random variable η2 defined by

η2(z) = (LK + λI)−1/2 (Kx) , z = (x, y) ∈ Z. (53)
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It takes values in HK . By (49), it satisfies

‖η2(z)‖K =

∥∥∥∥∥(LK + λI)−1/2
(∑

`

ϕ`(x)ϕ`

)∥∥∥∥∥
K

=

(∑
`

(ϕ`(x))2

λ` + λ

)1/2

.

So

E

[∥∥∥(LK + λI)−1/2 (Kx)
∥∥∥2
K

]
= E

[∑
`

(ϕ`(x))2

λ` + λ

]
= N (λ).

This is the statement of Part (a).
We also see from (49) that for x ∈ X ,

‖η2(z)‖K =

(∑
`

(ϕ`(x))2

λ` + λ

)1/2

≤ 1√
λ

(∑
`

(ϕ`(x))2
)1/2

=
1√
λ

√
K(x, x) ≤ κ√

λ
.

This verifies the statement of Part (b).
For Part (c), we consider another random variable η3 defined by

η3(z) = (LK + λI)−1/2 (g(z)Kx) , z = (x, y) ∈ Z. (54)

It takes values in HK and satisfies

‖η3(z)‖K = |g(z)|
∥∥∥(LK + λI)−1/2 (Kx)

∥∥∥
K

= |g(z)|

(∑
`

(ϕ`(x))2

λ` + λ

)1/2

.

So

‖η3(z)‖K ≤
κ‖g‖∞√

λ
, z ∈ Z

and

E
[
‖η3‖2K

]
≤ ‖g‖2∞E

[∑
`

(ϕ`(x))2

λ` + λ

]
= ‖g‖2∞N (λ).

Applying Lemma 25 verifies the statement in Part (c). The proof of the lemma is complete.
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