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Convergence of Gradient Descent for Minimum Error
Entropy Principle in Linear Regression
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Abstract—We study the convergence of minimum error entropy4
(MEE) algorithms when they are implemented by a gradient de-5
scent. This method has been used in practical applications for more6
than one decade, but there has been no consistency or rigorous7
error analysis. This paper gives the first rigorous proof for the8
convergence of the gradient descent method for MEE in a linear9
regression setting. The mean square error is proved to decay expo-10
nentially fast in terms of the iteration steps and of order O( 1

m
) in11

terms of the sample size m. The mean square convergence is guar-12
anteed when the step size is chosen appropriately and the scaling13
parameter is large enough.14

Index Terms—Minimum error entropy, error information,15
gradient descent method, error analysis, global convergence.16

I. INTRODUCTION17

R EGRESSION analysis plays important roles in many18

fields of science and engineering. The traditional least19

square method is the mostly used algorithm for regression in20

practice. However, it is suboptimal when the system noise is not21

normally distributed. Variant approaches have been proposed22

to deal with data with outliers or heavy-tailed distributions.23

Minimum error entropy (MEE) criterion is one of them. It is24

motivated by the idea of minimizing the information as mea-25

sured by entropy in the prediction error. The estimated model is26

expected to preserve information as much as possible and thus27

improves the predictive performance. Unlike the traditional least28

square method which relies only on the variance of the predic-29

tion error, the error entropy takes all higher order moments into30

account and is thus advantageous when MEE is used to handle31

non-Guassian and heavy tailed error distributions [1], [2]. As32

non-Gaussian noise is ubiquitous in real world applications, the33

superiority of MEE has been evidenced in a variety of applica-34

tions, which include adaptive filtering, clustering, classification,35

feature selection, and blind source separation [3]–[8].36
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Let X be a multivariate random variable with values in a 37

compact subset of Rn and Y a real valued response variable. 38

The purpose of regression analysis is to study the quantitative 39

relationship between X and Y . This usually leads to estimating 40

the regression function f∗(x) = E(Y |X = x) from a sample 41

of m observations z = {(xi , yi)}m
i=1 drawn independently and 42

identically. As most statistical and machine learning algorithms 43

for regression analysis have focused on the use of convex losses 44

such as the squared loss in the least square method and the insen- 45

sitive loss in support vector regression, approximation powers 46

of learning algorithms with convex losses have been well stud- 47

ied in the literature; see e.g. [9]–[11] and the references therein. 48

The MEE algorithms, however, use the error entropy as the loss 49

function which is not convex. It brings essential difficulties to 50

the analysis. Although the MEE algorithms have been verified 51

effective in many empirical studies, the study on its computa- 52

tional and mathematical properties is lagged a little bit behind. 53

The MEE approach was introduced in [1]. It aims to mini- 54

mize the information contained in the error and maximize the 55

information captured by the estimated model. Given an esti- 56

mator f of the regression function, define the error variable 57

as E = Y − f(X). One can measure the error information by 58

Renyi’s entropy or Shannon’s entropy. In this paper we consider 59

the second order Renyi’s entropy 60

H(E) = − log E(p
E
) = − log

∫
p2

E
(e)de

where p
E

denotes the probability density function of E. For the 61

given sample z, define ei = yi − f(xi). Then p
E

can be esti- 62

mated by Parzen windowing [12] which, given a kernel function 63

K : R → [0,∞) and a scaling parameter h > 0, defines a kernel 64

density estimator by 65

p̂
E
(e) =

1
m

m∑
i=1

Kh(e − ei) =
1

mh

m∑
i=1

K

(
e − ei

h

)
.

A usual choice is the Gaussian kernel density estimator where 66

K(u) = 1√
2π

exp(−u2

2 ) and Kh(u) = 1√
2πh

exp(− u2

2h2 ). The 67

empirical error information is 68

Ĥ(f) = − log

⎧⎨
⎩

1
m2h

m∑
i=1

m∑
j=1

K

(
ei − ej

h

)⎫⎬
⎭ .

The MEE algorithm searches for an estimator that minimizes 69

Ĥ over a hypothesis space. 70

The structure of the empirical entropy Ĥ exhibits that the 71

scaling parameter h plays an important role in the MEE 72

algorithm design. The value of h is adjusted for different learn- 73

ing tasks in MEE algorithms and the corresponding learning 74
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effects are presented in a series of numerical simulations; see75

e.g. [6], [7]. Mathematically, the predictive performance of MEE76

algorithms was analyzed in [13]–[16]. The convergence of MEE77

algorithms can be guaranteed only for homoscedastic model if78

the scaling parameter h is chosen small. The scaling parameter79

h should be chosen large enough to guarantee the algorithms80

to be asymptotically consistent for more general models. This81

coincides with the empirical studies in the literature.82

From a computational perspective, the loss function is close83

to the squared loss by weighing less on the high order statis-84

tics of the error when h is large. Thus, using a relatively large85

scaling parameter reduces the risk that MEE algorithms suf-86

fer from being stuck in local minima. MEE algorithms are87

usually implemented by gradient descent or stochastic gradi-88

ent descent [1], [17]–[19]. However, because the optimization89

problem arising from MEE is non-convex, the convergence of90

the gradient descent method is not unconditionally guaranteed.91

A mean squared convergence result is proved in [20] which,92

however, only guarantees the solution of the stochastic gradient93

descent method converges to a local minima but not necessarily94

the global minima. In this paper, our purpose is to derive con-95

ditions and stopping criteria for the gradient descent method to96

achieve global convergence.97

We focus on linear regression models in this paper. Assume98

y = w�
∗ x + ε, E[ε|x] = 0

for some w∗ ∈ Rn , where ε is a mean zero noise random vari-99

able. The regression function takes the form f∗(x) = w�
∗ x and100

the target of regression analysis is to estimate w∗ from the sam-101

ple. For an estimator ŵ, the goodness could be measured by the102

squared error ‖ŵ − w∗‖2 .103

The MEE estimator ŵ is defined as104

ŵ = arg min
w∈Rn

Ĥ(w)

where, given ei = yi − w�xi ,105

Ĥ(w) = − log

⎧⎨
⎩

1
m2h

m∑
i=1

m∑
j=1

K

(
ei − ej

h

)⎫⎬
⎭ .

As the logarithmic function is monotone and does not af-106

fect the minimization process, we remove it and consider the107

transformed empirical error information108

R(w) = − h2

m2

m∑
i=1

m∑
j=1

K

(
(yi − w�xi) − (yj − w�xj )

h

)
.

It is obvious the MEE estimator can also be obtained by109

ŵ = arg min
w∈Rn

R(w). (1)

When K is differentiable, the gradient descent algorithm for110

MEE starts with ŵ0 = 0 and updates the estimator by111

ŵt = ŵt−1 − ηt∇R(ŵt−1)

in the t-th step, where∇ is the gradient operator and ηt > 0 is the112

step size. When this method is used to solve the MEE estimator113

(1), the first question might be the convergence of ŵt to ŵ as114

the number of iterations becomes large. However, we would115

consider the problem in an alternative way. Recall the ultimate 116

goal is to learn the true regression coefficients vector w∗. On 117

one hand, if ŵt provide good estimates of w∗, the convergence 118

of ŵt to ŵ does not matter much. On the other hand, notice that 119

‖ŵt − w∗‖ ≤ ‖ŵt − ŵ‖ + ‖ŵ − w∗‖.

Even if ŵt does converge to ŵ, it does not make much sense 120

to iterate the gradient descent steps till convergence because the 121

second term on the right will dominate the error. Instead, the 122

algorithm should be stopped earlier when the performance of 123

the estimate does not improve. 124

In order to state our main results we need some assumptions. 125

Firstly, we assume both X and Y are uniformly bounded by 126

a constant M . Also, the covariance matrix VXX of X is non- 127

degenerate, that is, all the eigenvalues of VXX are positive. In 128

particular, we denote by λmax and λmin the largest and the 129

smallest eigenvalues of VXX , respectively. 130

To simplify our presentation and notations in the proofs, we 131

focus on symmetric kernels and define Ψ : [0,∞) → [0,∞) 132

as Ψ(u) = K(
√

2u) or equivalently, Ψ(u2

2 ) = K(u). With this 133

notation, the empirical error can be rewritten as 134

R(w) = − h2

m2

m∑
i=1

m∑
j=1

Ψ
(

[(yi − w�xi) − (yj − w�xj )]2

2h2

)
.

Assume Ψ is decreasing and differentiable, c0 = −Ψ′
+(0) > 135

0, and for some p > 0, 136

|Ψ′(u) − Ψ′
+(0)| ≤ cpu

p , ∀u > 0. (2)

When the Gaussian kernel is used, it is easy to verify that 137

Ψ(u) = 1√
2π

exp(−u). We have c0 = 1√
2π

and (2) holds with 138

p = 1 and cp = 1√
2π

. 139

Our first result, Theorem 1 below, shows that ŵt is uniformly 140

bounded with large probability. 141

Theorem 1: If 0 < ηt ≤ 1
2c0 λm a x

for all t ∈ N and h ≥ 142(
25 p + 4 cp M 6 p + 2

c0 λ2 p + 1
m in

)1/2p

, then for any 0 < δ < 1, we have 143

‖ŵt‖ ≤ 3M 2

λmin
for all t ∈ N

with probability 1 − δ provided that m ≥ 900M 4 log(8/δ)
λ2

m in
. 144

Because any bounded closed set in Rn is compact, 145

Theorem 1 guarantees that a subsequence of {ŵt} converges 146

to some point. To ensure the accumulation point is the solution 147

w∗ as we expected, the step size and the scaling parameters 148

should be selected appropriately. 149

Theorem 2: Let ηt = ηt−θ for some 0 ≤ θ < 1 and 0 < η ≤ 150

λm in
12c0 λ2

m a x
. Let h ≥

(
25 p + 4 cp M 6 p + 2

c0 λ2 p + 1
m in

)1/2p

. For any 0 < δ < 1, we 151

have 152

‖ŵT − w∗‖2 ≤ C ′
{
exp

(
− ηc0 λm in T 1−θ

1−θ

)
+

1
h4p

+
log(8/δ)

m

}

with probability 1 − δ provided that m ≥ 900M 4 log(8/δ)
λ2

m in
. Here 153

the constant C ′ is independent of m,h, or δ, and will be given 154

explicitly in the proof. 155
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Theorem 2 indicates that, under appropriate choices of the156

parameters, ŵt converges to w∗ exponentially fast in terms of157

the number of iterations and is of order O( 1
m ) in terms of the158

sample size. In particular, the convergence holds with a fixed159

step size ηt = η provided that η is small enough. In practice,160

given a set of observations, the sample size m is fixed. The161

number of iteration steps T = O(log m) is usually sufficient to162

achieve the best possible learning performance.163

II. PRELIMINARIES164

We first give several basic facts associated to the linear regres-165

sion model. Throughout this section we denote μX = E(X) and166

μY = E(Y ).167

Lemma 3: The covariance matrix VXX satisfies λmax =168

‖VXX ‖ ≤ M 2 .169

Proof: Note that VXX = E(XX�) − μX μ�
X . Since X is170

bounded by M , we have ‖E(XX�)‖ ≤ M 2 . Since both171

E(XX�) and μX μ�
X are positive semidefinite, we have172

‖VXX ‖ ≤ ‖E(XX�)‖ ≤ M 2 .

This proves the conclusion. �173

Lemma 4: Let VX Y denote the covariance vector between174

X and Y. We have VXX w∗ = VX Y and ‖w∗‖ ≤ 2M 2

λm in
.175

Proof: By the model assumption we have μY = μ�
X w∗.176

Therefore, y − μY = (x − μX )�w∗ + ε and177

(y − μY )(x − μX ) = (x − μX )(x − μX )�w∗ + ε(x − μX ).

Taking expectation both sides and noting the fact E(ε|x) = 0,178

we obtain VX Y = VXX w∗.179

Since both X and Y are bounded by M , we have180

‖VX Y ‖ = ‖E(XY ) − μX μY ‖ ≤ 2M 2 .

Thus181

‖w∗‖ = ‖V −1
XX VX Y ‖ ≤ 2M 2

λmin
.

This finishes the proof. �182

In our analysis, we need to deal with matrix and vector valued183

functions. For this purpose we need probability inequalities for184

Hilbert space valued random variables. The following one can185

be found in [21].186

Lemma 5: Let H be a Hilbert space and {ξi}m
i=1 be m in-187

dependent random variables with values in H. Suppose that for188

each i, ‖ξi‖ ≤ M almost surely. Denote σ2 =
∑m

i=1 E(‖ξi‖2).189

Then, for any ε > 0,190

Pr

{∥∥∥∥∥
1
m

m∑
i=1

[ξi − E(ξi)]

∥∥∥∥∥ ≥ ε

}

≤ 2 exp
{
− mε

2M
log

(
1 +

mMε

σ2

)}
.

By this lemma, we can prove the following inequality.191

Lemma 6: Let H be a Hilbert space and ξ be a random vari-192

able with values in H. Assume that ‖ξ‖ ≤ M almost surely. Let193

{ξ1 , ξ2 , . . . , ξm} be a sample of m independent observations194

for ξ. Then, for any ε > 0, 195

Pr

{∥∥∥∥∥
1
m

m∑
i=1

ξi − E(ξ)

∥∥∥∥∥ ≥ ε

}
≤ 2 exp

{
− mε2

2M 2 + Mε

}
.

(3)
Proof: Since ‖ξ‖ ≤ M almost surely, we have 196

σ2 =
m∑

i=1

E(‖ξi‖2) = mE(‖ξ‖2) ≤ mM 2 .

Applying Lemma 5 we obtain 197

Pr

{∥∥∥∥∥
1
m

m∑
i=1

ξi − E(ξ)

∥∥∥∥∥ ≥ ε

}

≤ 2 exp
{
− mε

2M
log

(
1 +

ε

M

)}
. (4)

By the elementary inequality log(1 + t) > 2t
2+t for t > 0, we 198

have 199

ε

M
log

(
1 +

ε

M

)
≥ 2ε2

2M 2 + Mε
.

Plugging this into (4) gives (3). � 200

Lemma 7: Let H be a Hilbert space and ξ be a random vari- 201

able with values in H. Assume that ‖ξ‖ ≤ M almost surely. Let 202

{ξ1 , ξ2 , . . . , ξm} be a sample of m independent observations 203

for ξ. Then, for any 0 < δ̃ < 1, we have with confidence 1 − δ̃, 204∥∥∥∥∥
1
m

m∑
i=1

ξi − E(ξ)

∥∥∥∥∥ ≤ 1
2
M

(
τ +

√
8τ + τ 2

)

where τ = log(2/δ̃)
m . 205

Using this lemma we can prove the following estimate. 206

Lemma 8: For any 0 < δ < 1, with probability at least 1 − δ, 207

we have 208∥∥∥∥∥∥
1

m2

m∑
i=1

m∑
j=1

(xi − xj )(xi − xj )�− 2VXX

∥∥∥∥∥∥ ≤ 10M 2√τ

(5)
and 209∥∥∥∥∥∥

1
m2

m∑
i=1

m∑
j=1

(yi − yj )(xi − xj ) − 2VX Y

∥∥∥∥∥∥ ≤ 12M 2√τ (6)

simultaneously, where τ = log(8/δ)
m . 210

Proof: Let x̄ = 1
m

∑m
i=1 xi and ȳ = 1

m

∑m
i=1 yi be the cor- 211

responding sample means of X and Y. 212

Applying Lemma 7 to ξ = X with δ̃ = δ
4 , we obtain 213

∥∥∥∥∥
1
m

m∑
i=1

xi − μX

∥∥∥∥∥ ≤ 1
2
M

(
τ +

√
8τ + τ 2

)
(7)

with probability at least 1 − δ
4 . Applying Lemma 7 to ξ = Y 214

with δ̃ = δ
4 , we obtain 215

∣∣∣∣∣
1
m

m∑
i=1

yi − μY

∣∣∣∣∣ ≤
1
2
M

(
τ +

√
8τ + τ 2

)
(8)
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with probability at least 1 − δ
4 . Recall that all n × n matrices216

form a Hilbert space under the Frobenius norm. Consider217

the matrix valued random variable ξ = XX� which satis-218

fies ‖ξ‖F = ‖X‖2 ≤ M 2 . Applying Lemma 7 with δ̃ = δ
4 , we219

obtain220 ∥∥∥∥∥
1
m

m∑
i=1

xix�
i − E(XX�)

∥∥∥∥∥
F

≤ 1
2
M 2

(
τ +

√
8τ + τ 2

)

with probability at least 1 − δ
4 . Since the operator norm is221

bounded by the Frobenius norm, we have222 ∥∥∥∥∥
1
m

m∑
i=1

xix�
i − E(XX�)

∥∥∥∥∥ ≤ 1
2
M 2

(
τ +

√
8τ + τ 2

)
(9)

with probability at least 1 − δ
4 . Applying Lemma 7 to ξ = XY223

with δ̃ = δ
4 , we obtain224 ∥∥∥∥∥

1
m

m∑
i=1

xiyi − E(XY )

∥∥∥∥∥ ≤ 1
2
M 2

(
τ +

√
8τ + τ 2

)
(10)

with probability at least 1 − δ
4 . Thus, (7)–(10) hold simultane-225

ously with probability at least 1 − δ. (We have used the fact226

that for a sequence of k events A1 , A2 , . . . , Ak , Pr(
⋂k

i=1 Ai) =227

Pr((
⋃k

i=1 Ac
i )c) ≥ 1 −

∑k
i=1 Pr(Ac

i ).) What is left is to verify228

(5) and (6) from (7)–(10).229

Let us first prove (5). Note that230

1
m2

m∑
i=1

m∑
j=1

(xi − xj )(xi − xj )� =
2
m

m∑
i=1

xix�
i − 2x̄x̄�.

Both terms on the right hand side are positive semidefinite231

matrices and their norms are no greater than 2M 2 . Thus,232 ∥∥∥∥∥
1

m2

m∑
i=1

m∑
j=1

(xi − xj )(xi − xj )�
∥∥∥∥∥ ≤ 2M 2 .

This, together with Lemma 3, implies233 ∥∥∥∥∥
1

m2

m∑
i=1

m∑
j=1

(xi − xj )(xi − xj )� − 2VXX

∥∥∥∥∥ ≤ 2M 2 .

So (5) holds almost surely if τ > 1
25 . When τ ≤ 1

25 , by (7)234

and (9), we obtain235 ∥∥∥∥∥
1

m2

m∑
i=1

m∑
j=1

(xi − xj )(xi − xj )� − 2VXX

∥∥∥∥∥

≤ 2

∥∥∥∥∥
1
m

m∑
i=1

xix�
i − E(XX�)

∥∥∥∥∥ + 2
∥∥x̄x̄� − μX μ�

X

∥∥

≤ M 2
(
τ +

√
8τ + τ 2

)
+ 4M‖x̄ − μX ‖

≤ 3M 2
(
τ +

√
8τ + τ 2

)

≤ 3M 2√τ

(√
1
25

+

√
8 +

1
25

)

≤ 10M 2√τ .

This proves (5). 236

Now we turn to (6). The proof is quite similar. First note that 237

the left hand side is bounded by 8M 2 almost surely. So the 238

inequality is always true when τ > 1. When τ ≤ 1, we need the 239

fact that 240

1
m2

m∑
i=1

m∑
j=1

(yi − yj )(xi − xj ) =
2
m

m∑
i=1

yixi − 2x̄ȳ.

By (7), (8) and (10), we obtain 241∥∥∥∥∥
1

m2

m∑
i=1

m∑
j=1

(yi − yj )(xi − xj ) − 2VX Y

∥∥∥∥∥

≤ 2

∥∥∥∥∥
1
m

m∑
i=1

yixi − E(XY )

∥∥∥∥∥
+ 2M

(
‖x̄ − μX ‖ + |ȳ − μY |

)

≤ 3M 2
(
τ +

√
8τ + τ 2

)

≤ 12M 2√τ .

We finish the proof. � 242

According to Lemma 8, we will adopt the notations 243

V̂XX =
1

2m2

m∑
i=1

m∑
j=1

(xi − xj )(xi − xj )�

and 244

V̂X Y =
1

2m2

m∑
i=1

m∑
j=1

(yi − yj )(xi − xj )

because they provide sample estimates of the covariance matrix 245

VXX and the covariance vector VX Y , respectively. 246

III. UNIFORM BOUND FOR THE SOLUTION PATH 247

In this section, we prove Theorem 1 which states that ŵt are 248

uniformly bounded with large probability. 249

To simplify our presentation, we adopt the notation 250

ζt(i, j) = (yi − ŵ�
t xi) − (yj − ŵ�

t xj )

for each t ∈ N in the sequel. The following proposition gives 251

conditions for the solution ŵt to be uniformly bounded. 252

Proposition 9: Let 0 < ηt ≤ 1
2c0 λm a x

for all t ≥ 1 and h is 253

chosen such that 254

h ≥
(

25p+4cpM
6p+2

c0λ
2p+1
min

)1/2p

. (11)

If the sample {(xi , yi)}m
i=1 satisfies 255

‖V̂XX − VXX ‖ ≤ 1
6
λmin , (12)

then 256

‖ŵt‖ ≤ 3M 2

λmin
.
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Proof: By the definition of V̂XX and V̂X Y and the fact257

Ψ′
+(0) = −c0 , we can write258

∇R(ŵt−1)

=
1

m2

m∑
i=1

m∑
j=1

Ψ′
(

ζ2
t−1(i, j)

2h2

)
ζt−1(i, j)(xi − xj )

=
1

m2

m∑
i=1

m∑
j=1

[
Ψ′

(ζ2
t−1(i, j)

2h2

)
− Ψ′

+(0)
]

ζt−1(i, j)(xi − xj )

− 2c0 V̂X Y + 2c0

(
V̂XX − VXX

)
ŵt−1 + 2c0VXX ŵt−1

:= Q1 + Q2 + Q3 + 2c0VXX ŵt−1 .

We prove the conclusion by induction. First it is obvious259

‖ŵ0‖ = 0 ≤ 3M 2

λm in
. Assume ‖ŵt−1‖ ≤ 3M 2

λm in
. We need to prove260

‖ŵt‖ ≤ 3M 2

λm in
.261

By the definition of ŵt , we have262

ŵt = ŵt−1 − ηt∇R(ŵt−1)

= (I − 2ηtc0VXX )ŵt−1 − ηt(Q1 + Q2 + Q3).

Since ηt ≤ 1
2c0 λm a x

, the matrix I − 2ηtc0VXX is positive263

semidefinite. We have264

‖(I − 2ηtc0VXX )ŵt−1‖ ≤ (1 − 2ηtc0λmin)
3M 2

λmin
.

Since X and Y are bounded by M almost surely and265

‖ŵt−1‖ ≤ 3M 2

λm in
, we have266

‖ζt−1(i, j)‖ ≤ 2M(1 + ‖ŵt−1‖)

≤ 2M

(
1 +

3M 2

λmin

)
≤ 8M 3

λmin
,

where we have used the fact λmin ≤ λmax ≤ M 2 . This together267

with the Lipschitz assumption on Ψ′ gives268

‖Q1‖ ≤ 1
m2

m∑
i=1

m∑
j=1

cp

(
|ζt−1(i, j)|2

2h2

)p

|ζt−1(i, j)| (2M)

≤ 25p+4cpM
6p+4λ−2p−1

min h−2p .

Under the condition (11), we have ‖Q1‖ ≤ c0M
2 . It is easy269

to verify ‖Q2‖ ≤ 4c0M
2 . As for Q3 , under the condition (12),270

we have ‖Q3‖ ≤ c0M
2 . Therefore, we have271

‖ŵt‖ ≤ (1 − 2ηtc0λmin)
3M 2

λmin
+ 6ηtc0M

2 ≤ 3M 2

λmin
.

This finishes the proof. �272

Now Theorem 1 can be proved by combining Proposition 9273

and Lemma 8.274

Proof of Theorem 1: By Lemma 8,275

‖V̂XX − VXX ‖ ≤ 5M 2

√
log(8/δ)

m

with probability 1 − δ. Thus, when m ≥ 900M 4 log(8/δ)
λ2

m in
, the con-276

dition (12) holds with probability at least 1 − δ. By Proposition277

9, we obtain the desired conclusion. �278

IV. ONE STEP ERROR ANALYSIS 279

In this section we show that the estimation error decreases 280

after each iteration step, which plays an essential role for the 281

proof of Theorem 2. 282

Proposition 10: Let 0 < ηt ≤ λm in
12c0 λ2

m a x
for all t ≥ 1 and h ≥ 283(

25 p + 4 cp M 6 p + 4

c0 λ2 p + 1
m in

)1/2p

. If the sample {(xi , yi)}m
i=1 satisfies 284

‖V̂XX − VXX ‖ ≤ 5M 2

√
log(8/δ)

m
≤ 1

6
λmin (13)

and 285

‖V̂X Y − VX Y ‖ ≤ 6M 2

√
log(8/δ)

m
, (14)

then 286

‖ŵt − w∗‖2 ≤ (1 − ηtc0λmin)‖ŵt−1 − w∗‖2

+ ηtC

(
h−4p +

log(8/δ)
m

)

for some constant C independent of m, δ, or h. 287

Proof: By the definition of ŵt , we have 288

‖ŵt − w∗‖2 = ‖ŵt−1 − w∗‖2

− 2ηt(ŵt−1 − w∗)�∇R(ŵt−1)

+ η2
t ‖∇R(ŵt−1)‖2 . (15)

The key to prove Proposition 10 is to estimate ∇R(ŵt−1) 289

appropriately. For this purpose we write 290

∇R(ŵt−1)

=
1

m2

m∑
i=1

m∑
j=1

Ψ′
(

ζ 2
t−1 (i,j )

2h2

)
ζt−1(i, j)(xi − xj )

=
1

m2

m∑
i=1

m∑
j=1

[
Ψ′

(
ζ 2

t−1 (i,j )
2h2

)
− Ψ′

+(0)
]
ζt−1(i, j)(xi − xj )

− c0

m2

m∑
i=1

m∑
j=1

ζt−1(i, j)(xi − xj )

=
1

m2

m∑
i=1

m∑
j=1

[
Ψ′

(
ζ 2

t−1 (i,j )
2h2

)
− Ψ′

+(0)
]
ζt−1(i, j)(xi − xj )

− 2c0

{(
V̂X Y − VX Y

)
−

(
V̂XX − VXX

)
ŵt−1

}

+ 2c0VXX (ŵt−1 − w∗)

:= D1 + D2 + D3 ,

where we have used the fact VX Y = VXX w∗ obtained in 291

Lemma 4. 292

Note that all the conditions for Proposition 9 hold. So we 293

have the bound ‖ŵt‖ ≤ 3M 2

λm in
for all t. For D1 , by the Lipschitz 294

condition of Ψ′ and the bound for ŵt−1 , as we have shown in 295

the proof of Proposition 9, we have 296

‖D1‖ ≤ 25p+4cpM
6p+4λ−2p−1

min h−2p . (16)
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For D2 , by (13), (14) and the bound for ŵt−1 , we have297

‖D2‖ ≤ 2c0

(
‖V̂X Y − VX Y ‖ + ‖V̂XX − VXX ‖‖ŵt−1‖

)

≤ 2c0

(
6M 2 +

15M 4

λmin

)√
log(8/δ)

m

≤ 42c0M
4λ−1

min

√
log(8/δ)

m
. (17)

Now we can estimate the second term on the right of (15).298

For notational simplicity let299

C̃ = max{25p+4cpM
6p+4λ−2p−1

min , 42c0M
4λ−1

min}.

By (16) and the elementary inequality ab ≤ a2

2 + b2

2 , we have300

∣∣(ŵt−1 − w∗)�D1
∣∣

≤ c0λmin

2
‖ŵt−1 − w∗‖2 +

1
2c0λmin

‖D1‖2 .

≤ c0λmin

2
‖ŵt−1 − w∗‖2 +

C̃2

2c0λmin
h−4p .

Similarly, by (17), we have301

∣∣(ŵt−1 − w∗)�D2
∣∣

≤ c0λmin

2
‖ŵt−1 − w∗‖2 +

1
2c0λmin

‖D2‖2

≤ c0λmin

2
‖ŵt−1 − w∗‖2 +

C̃2

2c0λmin

log(8/δ)
m

.

These together with the fact that302

(ŵt−1 − w∗)�D3 = 2c0(ŵt−1 − w∗)�VXX (ŵt−1 − w∗)

≥ 2c0λmin‖ŵt−1 − w∗‖2

enable us to obtain303

− 2ηt(ŵt−1 − w∗)�∇R(ŵt−1)

≤ − 2ηtc0λmin‖ŵt−1 − w∗‖2

+
ηtC̃

2

c0λmin

(
h−4p +

log(8/δ)
m

)
. (18)

We turn to estimate the last term on the right hand side of304

(15). We need the trivial bound305

‖D3‖ ≤ 2c0λmax‖ŵt−1 − w∗‖. (19)

Combining the estimates in (16), (17), and (19), we have 306

η2
t ‖∇R(ŵt−1)‖2

≤ 3η2
t (‖D1‖2 + ‖D2‖2 + ‖D3‖2)

≤ 12η2
t c2

0λ
2
max‖ŵt−1 − w∗‖2

+ 3η2
t C̃2

(
h−4p +

log(8/δ)
m

)

≤ ηtc0λmin‖ŵt−1 − w∗‖2

+
1

4c0λmin
ηtC̃

2
(

h−4p +
log(8/δ)

m

)
, (20)

where we used the assumption ηt ≤ λm in
12c0 λ2

m a x
≤ 1

12c0 λm in
. 307

Let C = 5C̃ 2

4c0 λm in
. Plugging the estimates in (18) and (20) into 308

(15), we obtain the desired conclusion. � 309

V. ERROR BOUNDS AND CONVERGENCE RATES 310

To prove Theorem 2, we need two lemmas from [22]. 311

Lemma 11: For v ∈ (0, 1] and θ ∈ [0, 1], 312

T∑
t=1

1
tθ

T∏
j=t+1

(
1 − v

jθ

)
≤ 3

v
.

Lemma 12: For any 0 ≤ 
 < T and 0 < θ < 1, there holds 313

T∑
t=
+1

t−θ ≥ 1
1 − θ

[
(T + 1)1−θ − (
 + 1)1−θ

]
.

Proof of Theorem 2: For a sample satisfying the conditions 314

(13) and (14), Proposition 10 states that 315

‖ŵt − w∗‖2 ≤ (1 − ηtc0λmin)‖ŵt−1 − w∗‖2

+ ηtC

(
h−4p +

log(8/δ)
m

)

for all t. Applying this estimate iteratively we obtain 316

‖ŵT − w∗‖2 ≤ ‖w∗‖2
T∏

t=1

(1 − ηtc0λmin)

+ C

(
h−4p +

log(8/δ)
m

) T∑
t=1

T∏
j=t+1

(1 − ηj c0λmin)ηt .

Since ηt = ηt−θ , by the elementary inequality 1 − u ≤ 317

exp(−u) and Lemma 12 with 
 = 0, we have 318

T∏
t=1

(1 − ηtc0λmin) ≤ exp

(
−c0λmin

T∑
t=1

ηt

)

≤ exp

(
ηc0λmin

(
1 − (T + 1)1−θ

)
1 − θ

)

≤ exp

(
ηc0λmin

(
1 − T 1−θ

)
1 − θ

)
.
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Lemma 11 with v = ηc0λmin yields319

T∑
t=1

T∏
j=t+1

(1 − ηj c0λmin)ηt

= η

T∑
t=1

1
tθ

T∏
j=t+1

(
1 − ηc0λmin

jθ

)
≤ 3

c0λmin
.

Therefore,320

‖ŵT − w∗‖2 ≤ ‖w∗‖2 exp
(

ηc0λmin(1 − T 1−θ )
1 − θ

)

+
3C

c0λmin

(
h−4p +

log(8/δ)
m

)

≤ C ′
{

exp
(
− ηc0 λm in T 1−θ

1−θ

)
+ h−4p +

log(8/δ)
m

}
,

where C ′ = ‖w∗‖2 exp
(

ηc0 λm in
1−θ

)
+ 3C

c0 λm in
. The proof of The-321

orem 2 is completed after noticing that the conditions (13) and322

(14) hold with probability at least 1 − δ, as are guaranteed by323

Lemma 8. �324

VI. SIMULATIONS325

In this section we study the empirical performance of the326

gradient descent method for MEE by simulations and compare327

it with our theoretical analysis. On one hand we expect the328

theoretical analysis provides some guidance to the empirical329

implementation. On the other hand, since the theoretical anal-330

ysis is based on upper bounds which might be far from tight,331

it is important to understand the gap between the theory and332

empirical applications.333

In the simulation, let x ∈ R10 and the model be defined by334

Y = w�
∗ x + ε with w∗ = [1 −1 1 −1 1 −1 1 −1 1 −1]� and335

x ∼ N(0, I10). We consider two types of noise. The first type336

is the Gaussian noise ε ∼ N(0, cw�
∗ x) for each given x. The337

second type is the generalized Gaussian noise with a probabil-338

ity density function f(ε) ∝ exp(−|cε|0.3). It is a typical heavy339

tailed distribution and has been employed in [2] to explore the340

effectiveness of a minimum total error entropy algorithm. For341

both noise models we select the constant c so that the signal to342

noise ratio equal to one. As indicated by Theorem 2, a small343

constant step size can be used to guarantee convergence and the344

scaling parameter should be large enough. In our simulations345

we have chosen ηt =
√

0.005π (so that it satisfies the condition346

in Theorem 2) and h = 10. We let the sample size m vary from347

50 to 500. The simulation results based on 100 repeated exper-348

iments were reported in Figs. 1 and 2 for the two noise models,349

respectively.350

In Figs. 1(a) and 2(a) we report the change of the mean351

squared error as the number of iterations increases. In Figs. 1(b)352

and 2(b) we compare the mean squared error with iteration to353

convergence and the mean squared error with optimal itera-354

tion (i.e., the number of iterations that leads to minimal mean355

squared error). In Figs. 1(c) and 2(c) we compare the num-356

ber of iterations to convergence and the optimal number of357

Fig. 1. Simulation results for Gaussian noise.

iterations. Similar results are seen regardless of the noise types. 358

All these results indicate that the optimal solution can be 359

achieved by early stopping the gradient descent iteration while 360

further increasing the number of iterations may hurt the learning 361

performance. The performance degradation is notable in a small 362

sample setting while negligible in a large sample setting. There- 363

fore, early stopping is not only sufficient but also necessary 364

when the sample size is small. An interesting observation is that 365

the number of iterations to convergence and the optimal number 366

of iterations tend to coincide when the sample size is large. A 367

plausible explanation is that when the sample size is large, the 368

empirical risk approximates the expected risk well and thus ŵ 369

approximates w∗ well. So the optimal solution does require ŵt 370

to converge to ŵ. We observed that the number of iterations to 371

convergence decreases as the sample size increases. Although it 372
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Fig. 2. Simulation results for generalized Gaussian noise.

does not contradict our analysis, it does seem surprising. We do373

not have an explanation at the moment and would leave it for374

future study.375

Recall that the upper bound in Theorem 2 implies the suffi-376

ciency of early stopping for an optimal solution in a large sample377

size setting. Moreover, although it is hard to verify the optimal378

number of iterations is of order O(log m), it does increase very379

slowly according Figs. 1(c) and 2(c).380

Theorem 2 also provides useful insight on the choice of the381

step size. The upper bound of η can be estimated from the382

sample. Choosing η around half of the upper bound usually383

works well in practice. However, there is a gap between the384

theoretical analysis and empirical applications regarding the385

choice of the scaling parameter h. The theoretical lower bound 386

on h is too restrictive. In practice it is found that a moderately 387

large h is good and a very large h is not necessary. 388

VII. DISCUSSIONS 389

To derive our results, we have assumed that the covariance 390

matrix VXX of the input variable X is non-degenerate. This 391

condition, however, may not be true in many situations. A very 392

typical model is the classical linear regression model where an 393

intercept is included: 394

Y = β0 + β�
1 Z + ε (21)

with β0 ∈ R, β1 ∈ Rn , and Z a vector valued random variable 395

containing n explanatory variables. In this case, w∗ = [β0 β�
1 ]� 396

and X = [1 Z�]�. Note that 397

VXX =

(
0 0

0 VZZ

)
.

So it is always degenerate. 398

When VXX is degenerate, we cannot prove the convergence 399

of ŵt to w∗. Instead, we need to consider their projections onto 400

the principal component space. Let U denote the subspace ofRn 401

spanned by the principal components associated to the positive 402

eigenvalues and PU the projection onto U . Let λmin denote the 403

smallest positive eigenvalue. We can prove 404

λmin‖PU (w − w∗)‖2 ≤ (w − w∗)�VXX (w − w∗)

≤ λmax‖PU (w − w∗)‖2 .

By this relationship and the techniques developed in this paper 405

and [23], we can prove the convergence of PU (ŵt) to PU (w∗). 406

This guarantees the variance of ŵ�
t X converges to the variance 407

w�
∗ X and thus ŵ�

t X plus an appropriate intercept provides 408

good predictive performance. In the model (21), if VZZ is posi- 409

tive definite, we see ŵt estimates the slope coefficients β1 . 410

As for the implementation of the algorithm, we remark that 411

if VXX is non-degenerate, the initial point is not necessarily 412

chosen as ŵ0 = 0. The convergence holds true for any starting 413

point. If VXX is degenerate, the convergence of ŵt to w∗ can 414

be proved if the starting value is in the principal components 415

space U. Actually, since xi − xj is in U , all ŵt are in U . Thus, 416

PU (ŵt) = ŵt and the convergence of ŵt to PU (w∗) is exactly 417

the convergence of PU (ŵt) to PU (w∗). However, if the starting 418

point has a nonzero components normal to U , it will never 419

diminish during the iteration process. 420

We have focused on linear regression models in this paper. 421

Note that the MEE principle can be extended to nonlinear re- 422

gression by the kernel trick [14], [17]. Regularization theory 423

plays an important role to overcome the overfitting problem in 424

this case. It would be interesting to study the use of gradient 425

descent for the kernel MEE method in the future. 426
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Convergence of Gradient Descent for Minimum Error
Entropy Principle in Linear Regression

1

2

Ting Hu, Qiang Wu, and Ding-Xuan Zhou3

Abstract—We study the convergence of minimum error entropy4
(MEE) algorithms when they are implemented by a gradient de-5
scent. This method has been used in practical applications for more6
than one decade, but there has been no consistency or rigorous7
error analysis. This paper gives the first rigorous proof for the8
convergence of the gradient descent method for MEE in a linear9
regression setting. The mean square error is proved to decay expo-10
nentially fast in terms of the iteration steps and of order O( 1

m
) in11

terms of the sample size m. The mean square convergence is guar-12
anteed when the step size is chosen appropriately and the scaling13
parameter is large enough.14

Index Terms—Minimum error entropy, error information,15
gradient descent method, error analysis, global convergence.16

I. INTRODUCTION17

R EGRESSION analysis plays important roles in many18

fields of science and engineering. The traditional least19

square method is the mostly used algorithm for regression in20

practice. However, it is suboptimal when the system noise is not21

normally distributed. Variant approaches have been proposed22

to deal with data with outliers or heavy-tailed distributions.23

Minimum error entropy (MEE) criterion is one of them. It is24

motivated by the idea of minimizing the information as mea-25

sured by entropy in the prediction error. The estimated model is26

expected to preserve information as much as possible and thus27

improves the predictive performance. Unlike the traditional least28

square method which relies only on the variance of the predic-29

tion error, the error entropy takes all higher order moments into30

account and is thus advantageous when MEE is used to handle31

non-Guassian and heavy tailed error distributions [1], [2]. As32

non-Gaussian noise is ubiquitous in real world applications, the33

superiority of MEE has been evidenced in a variety of applica-34

tions, which include adaptive filtering, clustering, classification,35

feature selection, and blind source separation [3]–[8].36

Manuscript received November 12, 2015; revised April 15, 2016 and June 29,
2016; accepted August 29, 2016. The associate editor coordinating the review of
this manuscript and approving it for publication was Dr. Dmitry M. Malioutov.
The work was supported in part by the National Natural Science Foundation
of China under Grants 11671307, 11501078, 11671171, 11461161006, and
11471292, in part by the U.S. Department of Agriculture National Institute
of Food and Agriculture under Grant 2016-70001-24636, and in part by the
Research Grants Council of Hong Kong (Project no. CityU 11303915).

T. Hu is with the School of Mathematics and Statistics, Wuhan University,
Wuhan 430072, China (e-mail: tinghu@whu.edu.cn).

Q. Wu is with the Department of Mathematical Sciences and the Com-
putational Science Ph.D. Program, Middle Tennessee State University,
Murfreesboro, TN 37132 USA (e-mail: qwu@mtsu.edu).

D.-X. Zhou is with the Department of Mathematics, City University of
Hong Kong, Kowloon, Hong Kong (e-mail: mazhou@cityu.edu.hk).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TSP.2016.2612169

Let X be a multivariate random variable with values in a 37

compact subset of Rn and Y a real valued response variable. 38

The purpose of regression analysis is to study the quantitative 39

relationship between X and Y . This usually leads to estimating 40

the regression function f∗(x) = E(Y |X = x) from a sample 41

of m observations z = {(xi , yi)}m
i=1 drawn independently and 42

identically. As most statistical and machine learning algorithms 43

for regression analysis have focused on the use of convex losses 44

such as the squared loss in the least square method and the insen- 45

sitive loss in support vector regression, approximation powers 46

of learning algorithms with convex losses have been well stud- 47

ied in the literature; see e.g. [9]–[11] and the references therein. 48

The MEE algorithms, however, use the error entropy as the loss 49

function which is not convex. It brings essential difficulties to 50

the analysis. Although the MEE algorithms have been verified 51

effective in many empirical studies, the study on its computa- 52

tional and mathematical properties is lagged a little bit behind. 53

The MEE approach was introduced in [1]. It aims to mini- 54

mize the information contained in the error and maximize the 55

information captured by the estimated model. Given an esti- 56

mator f of the regression function, define the error variable 57

as E = Y − f(X). One can measure the error information by 58

Renyi’s entropy or Shannon’s entropy. In this paper we consider 59

the second order Renyi’s entropy 60

H(E) = − log E(p
E
) = − log

∫
p2

E
(e)de

where p
E

denotes the probability density function of E. For the 61

given sample z, define ei = yi − f(xi). Then p
E

can be esti- 62

mated by Parzen windowing [12] which, given a kernel function 63

K : R → [0,∞) and a scaling parameter h > 0, defines a kernel 64

density estimator by 65

p̂
E
(e) =

1
m

m∑
i=1

Kh(e − ei) =
1

mh

m∑
i=1

K

(
e − ei

h

)
.

A usual choice is the Gaussian kernel density estimator where 66

K(u) = 1√
2π

exp(−u2

2 ) and Kh(u) = 1√
2πh

exp(− u2

2h2 ). The 67

empirical error information is 68

Ĥ(f) = − log

⎧⎨
⎩

1
m2h

m∑
i=1

m∑
j=1

K

(
ei − ej

h

)⎫⎬
⎭ .

The MEE algorithm searches for an estimator that minimizes 69

Ĥ over a hypothesis space. 70

The structure of the empirical entropy Ĥ exhibits that the 71

scaling parameter h plays an important role in the MEE 72

algorithm design. The value of h is adjusted for different learn- 73

ing tasks in MEE algorithms and the corresponding learning 74

1053-587X © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.
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effects are presented in a series of numerical simulations; see75

e.g. [6], [7]. Mathematically, the predictive performance of MEE76

algorithms was analyzed in [13]–[16]. The convergence of MEE77

algorithms can be guaranteed only for homoscedastic model if78

the scaling parameter h is chosen small. The scaling parameter79

h should be chosen large enough to guarantee the algorithms80

to be asymptotically consistent for more general models. This81

coincides with the empirical studies in the literature.82

From a computational perspective, the loss function is close83

to the squared loss by weighing less on the high order statis-84

tics of the error when h is large. Thus, using a relatively large85

scaling parameter reduces the risk that MEE algorithms suf-86

fer from being stuck in local minima. MEE algorithms are87

usually implemented by gradient descent or stochastic gradi-88

ent descent [1], [17]–[19]. However, because the optimization89

problem arising from MEE is non-convex, the convergence of90

the gradient descent method is not unconditionally guaranteed.91

A mean squared convergence result is proved in [20] which,92

however, only guarantees the solution of the stochastic gradient93

descent method converges to a local minima but not necessarily94

the global minima. In this paper, our purpose is to derive con-95

ditions and stopping criteria for the gradient descent method to96

achieve global convergence.97

We focus on linear regression models in this paper. Assume98

y = w�
∗ x + ε, E[ε|x] = 0

for some w∗ ∈ Rn , where ε is a mean zero noise random vari-99

able. The regression function takes the form f∗(x) = w�
∗ x and100

the target of regression analysis is to estimate w∗ from the sam-101

ple. For an estimator ŵ, the goodness could be measured by the102

squared error ‖ŵ − w∗‖2 .103

The MEE estimator ŵ is defined as104

ŵ = arg min
w∈Rn

Ĥ(w)

where, given ei = yi − w�xi ,105

Ĥ(w) = − log

⎧⎨
⎩

1
m2h

m∑
i=1

m∑
j=1

K

(
ei − ej

h

)⎫⎬
⎭ .

As the logarithmic function is monotone and does not af-106

fect the minimization process, we remove it and consider the107

transformed empirical error information108

R(w) = − h2

m2

m∑
i=1

m∑
j=1

K

(
(yi − w�xi) − (yj − w�xj )

h

)
.

It is obvious the MEE estimator can also be obtained by109

ŵ = arg min
w∈Rn

R(w). (1)

When K is differentiable, the gradient descent algorithm for110

MEE starts with ŵ0 = 0 and updates the estimator by111

ŵt = ŵt−1 − ηt∇R(ŵt−1)

in the t-th step, where∇ is the gradient operator and ηt > 0 is the112

step size. When this method is used to solve the MEE estimator113

(1), the first question might be the convergence of ŵt to ŵ as114

the number of iterations becomes large. However, we would115

consider the problem in an alternative way. Recall the ultimate 116

goal is to learn the true regression coefficients vector w∗. On 117

one hand, if ŵt provide good estimates of w∗, the convergence 118

of ŵt to ŵ does not matter much. On the other hand, notice that 119

‖ŵt − w∗‖ ≤ ‖ŵt − ŵ‖ + ‖ŵ − w∗‖.

Even if ŵt does converge to ŵ, it does not make much sense 120

to iterate the gradient descent steps till convergence because the 121

second term on the right will dominate the error. Instead, the 122

algorithm should be stopped earlier when the performance of 123

the estimate does not improve. 124

In order to state our main results we need some assumptions. 125

Firstly, we assume both X and Y are uniformly bounded by 126

a constant M . Also, the covariance matrix VXX of X is non- 127

degenerate, that is, all the eigenvalues of VXX are positive. In 128

particular, we denote by λmax and λmin the largest and the 129

smallest eigenvalues of VXX , respectively. 130

To simplify our presentation and notations in the proofs, we 131

focus on symmetric kernels and define Ψ : [0,∞) → [0,∞) 132

as Ψ(u) = K(
√

2u) or equivalently, Ψ(u2

2 ) = K(u). With this 133

notation, the empirical error can be rewritten as 134

R(w) = − h2

m2

m∑
i=1

m∑
j=1

Ψ
(

[(yi − w�xi) − (yj − w�xj )]2

2h2

)
.

Assume Ψ is decreasing and differentiable, c0 = −Ψ′
+(0) > 135

0, and for some p > 0, 136

|Ψ′(u) − Ψ′
+(0)| ≤ cpu

p , ∀u > 0. (2)

When the Gaussian kernel is used, it is easy to verify that 137

Ψ(u) = 1√
2π

exp(−u). We have c0 = 1√
2π

and (2) holds with 138

p = 1 and cp = 1√
2π

. 139

Our first result, Theorem 1 below, shows that ŵt is uniformly 140

bounded with large probability. 141

Theorem 1: If 0 < ηt ≤ 1
2c0 λm a x

for all t ∈ N and h ≥ 142(
25 p + 4 cp M 6 p + 2

c0 λ2 p + 1
m in

)1/2p

, then for any 0 < δ < 1, we have 143

‖ŵt‖ ≤ 3M 2

λmin
for all t ∈ N

with probability 1 − δ provided that m ≥ 900M 4 log(8/δ)
λ2

m in
. 144

Because any bounded closed set in Rn is compact, 145

Theorem 1 guarantees that a subsequence of {ŵt} converges 146

to some point. To ensure the accumulation point is the solution 147

w∗ as we expected, the step size and the scaling parameters 148

should be selected appropriately. 149

Theorem 2: Let ηt = ηt−θ for some 0 ≤ θ < 1 and 0 < η ≤ 150

λm in
12c0 λ2

m a x
. Let h ≥

(
25 p + 4 cp M 6 p + 2

c0 λ2 p + 1
m in

)1/2p

. For any 0 < δ < 1, we 151

have 152

‖ŵT − w∗‖2 ≤ C ′
{
exp

(
− ηc0 λm in T 1−θ

1−θ

)
+

1
h4p

+
log(8/δ)

m

}

with probability 1 − δ provided that m ≥ 900M 4 log(8/δ)
λ2

m in
. Here 153

the constant C ′ is independent of m,h, or δ, and will be given 154

explicitly in the proof. 155
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Theorem 2 indicates that, under appropriate choices of the156

parameters, ŵt converges to w∗ exponentially fast in terms of157

the number of iterations and is of order O( 1
m ) in terms of the158

sample size. In particular, the convergence holds with a fixed159

step size ηt = η provided that η is small enough. In practice,160

given a set of observations, the sample size m is fixed. The161

number of iteration steps T = O(log m) is usually sufficient to162

achieve the best possible learning performance.163

II. PRELIMINARIES164

We first give several basic facts associated to the linear regres-165

sion model. Throughout this section we denote μX = E(X) and166

μY = E(Y ).167

Lemma 3: The covariance matrix VXX satisfies λmax =168

‖VXX ‖ ≤ M 2 .169

Proof: Note that VXX = E(XX�) − μX μ�
X . Since X is170

bounded by M , we have ‖E(XX�)‖ ≤ M 2 . Since both171

E(XX�) and μX μ�
X are positive semidefinite, we have172

‖VXX ‖ ≤ ‖E(XX�)‖ ≤ M 2 .

This proves the conclusion. �173

Lemma 4: Let VX Y denote the covariance vector between174

X and Y. We have VXX w∗ = VX Y and ‖w∗‖ ≤ 2M 2

λm in
.175

Proof: By the model assumption we have μY = μ�
X w∗.176

Therefore, y − μY = (x − μX )�w∗ + ε and177

(y − μY )(x − μX ) = (x − μX )(x − μX )�w∗ + ε(x − μX ).

Taking expectation both sides and noting the fact E(ε|x) = 0,178

we obtain VX Y = VXX w∗.179

Since both X and Y are bounded by M , we have180

‖VX Y ‖ = ‖E(XY ) − μX μY ‖ ≤ 2M 2 .

Thus181

‖w∗‖ = ‖V −1
XX VX Y ‖ ≤ 2M 2

λmin
.

This finishes the proof. �182

In our analysis, we need to deal with matrix and vector valued183

functions. For this purpose we need probability inequalities for184

Hilbert space valued random variables. The following one can185

be found in [21].186

Lemma 5: Let H be a Hilbert space and {ξi}m
i=1 be m in-187

dependent random variables with values in H. Suppose that for188

each i, ‖ξi‖ ≤ M almost surely. Denote σ2 =
∑m

i=1 E(‖ξi‖2).189

Then, for any ε > 0,190

Pr

{∥∥∥∥∥
1
m

m∑
i=1

[ξi − E(ξi)]

∥∥∥∥∥ ≥ ε

}

≤ 2 exp
{
− mε

2M
log

(
1 +

mMε

σ2

)}
.

By this lemma, we can prove the following inequality.191

Lemma 6: Let H be a Hilbert space and ξ be a random vari-192

able with values in H. Assume that ‖ξ‖ ≤ M almost surely. Let193

{ξ1 , ξ2 , . . . , ξm} be a sample of m independent observations194

for ξ. Then, for any ε > 0, 195

Pr

{∥∥∥∥∥
1
m

m∑
i=1

ξi − E(ξ)

∥∥∥∥∥ ≥ ε

}
≤ 2 exp

{
− mε2

2M 2 + Mε

}
.

(3)
Proof: Since ‖ξ‖ ≤ M almost surely, we have 196

σ2 =
m∑

i=1

E(‖ξi‖2) = mE(‖ξ‖2) ≤ mM 2 .

Applying Lemma 5 we obtain 197

Pr

{∥∥∥∥∥
1
m

m∑
i=1

ξi − E(ξ)

∥∥∥∥∥ ≥ ε

}

≤ 2 exp
{
− mε

2M
log

(
1 +

ε

M

)}
. (4)

By the elementary inequality log(1 + t) > 2t
2+t for t > 0, we 198

have 199

ε

M
log

(
1 +

ε

M

)
≥ 2ε2

2M 2 + Mε
.

Plugging this into (4) gives (3). � 200

Lemma 7: Let H be a Hilbert space and ξ be a random vari- 201

able with values in H. Assume that ‖ξ‖ ≤ M almost surely. Let 202

{ξ1 , ξ2 , . . . , ξm} be a sample of m independent observations 203

for ξ. Then, for any 0 < δ̃ < 1, we have with confidence 1 − δ̃, 204∥∥∥∥∥
1
m

m∑
i=1

ξi − E(ξ)

∥∥∥∥∥ ≤ 1
2
M

(
τ +

√
8τ + τ 2

)

where τ = log(2/δ̃)
m . 205

Using this lemma we can prove the following estimate. 206

Lemma 8: For any 0 < δ < 1, with probability at least 1 − δ, 207

we have 208∥∥∥∥∥∥
1

m2

m∑
i=1

m∑
j=1

(xi − xj )(xi − xj )�− 2VXX

∥∥∥∥∥∥ ≤ 10M 2√τ

(5)
and 209∥∥∥∥∥∥

1
m2

m∑
i=1

m∑
j=1

(yi − yj )(xi − xj ) − 2VX Y

∥∥∥∥∥∥ ≤ 12M 2√τ (6)

simultaneously, where τ = log(8/δ)
m . 210

Proof: Let x̄ = 1
m

∑m
i=1 xi and ȳ = 1

m

∑m
i=1 yi be the cor- 211

responding sample means of X and Y. 212

Applying Lemma 7 to ξ = X with δ̃ = δ
4 , we obtain 213

∥∥∥∥∥
1
m

m∑
i=1

xi − μX

∥∥∥∥∥ ≤ 1
2
M

(
τ +

√
8τ + τ 2

)
(7)

with probability at least 1 − δ
4 . Applying Lemma 7 to ξ = Y 214

with δ̃ = δ
4 , we obtain 215

∣∣∣∣∣
1
m

m∑
i=1

yi − μY

∣∣∣∣∣ ≤
1
2
M

(
τ +

√
8τ + τ 2

)
(8)
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with probability at least 1 − δ
4 . Recall that all n × n matrices216

form a Hilbert space under the Frobenius norm. Consider217

the matrix valued random variable ξ = XX� which satis-218

fies ‖ξ‖F = ‖X‖2 ≤ M 2 . Applying Lemma 7 with δ̃ = δ
4 , we219

obtain220 ∥∥∥∥∥
1
m

m∑
i=1

xix�
i − E(XX�)

∥∥∥∥∥
F

≤ 1
2
M 2

(
τ +

√
8τ + τ 2

)

with probability at least 1 − δ
4 . Since the operator norm is221

bounded by the Frobenius norm, we have222 ∥∥∥∥∥
1
m

m∑
i=1

xix�
i − E(XX�)

∥∥∥∥∥ ≤ 1
2
M 2

(
τ +

√
8τ + τ 2

)
(9)

with probability at least 1 − δ
4 . Applying Lemma 7 to ξ = XY223

with δ̃ = δ
4 , we obtain224 ∥∥∥∥∥

1
m

m∑
i=1

xiyi − E(XY )

∥∥∥∥∥ ≤ 1
2
M 2

(
τ +

√
8τ + τ 2

)
(10)

with probability at least 1 − δ
4 . Thus, (7)–(10) hold simultane-225

ously with probability at least 1 − δ. (We have used the fact226

that for a sequence of k events A1 , A2 , . . . , Ak , Pr(
⋂k

i=1 Ai) =227

Pr((
⋃k

i=1 Ac
i )c) ≥ 1 −

∑k
i=1 Pr(Ac

i ).) What is left is to verify228

(5) and (6) from (7)–(10).229

Let us first prove (5). Note that230

1
m2

m∑
i=1

m∑
j=1

(xi − xj )(xi − xj )� =
2
m

m∑
i=1

xix�
i − 2x̄x̄�.

Both terms on the right hand side are positive semidefinite231

matrices and their norms are no greater than 2M 2 . Thus,232 ∥∥∥∥∥
1

m2

m∑
i=1

m∑
j=1

(xi − xj )(xi − xj )�
∥∥∥∥∥ ≤ 2M 2 .

This, together with Lemma 3, implies233 ∥∥∥∥∥
1

m2

m∑
i=1

m∑
j=1

(xi − xj )(xi − xj )� − 2VXX

∥∥∥∥∥ ≤ 2M 2 .

So (5) holds almost surely if τ > 1
25 . When τ ≤ 1

25 , by (7)234

and (9), we obtain235 ∥∥∥∥∥
1

m2

m∑
i=1

m∑
j=1

(xi − xj )(xi − xj )� − 2VXX

∥∥∥∥∥

≤ 2

∥∥∥∥∥
1
m

m∑
i=1

xix�
i − E(XX�)

∥∥∥∥∥ + 2
∥∥x̄x̄� − μX μ�

X

∥∥

≤ M 2
(
τ +

√
8τ + τ 2

)
+ 4M‖x̄ − μX ‖

≤ 3M 2
(
τ +

√
8τ + τ 2

)

≤ 3M 2√τ

(√
1
25

+

√
8 +

1
25

)

≤ 10M 2√τ .

This proves (5). 236

Now we turn to (6). The proof is quite similar. First note that 237

the left hand side is bounded by 8M 2 almost surely. So the 238

inequality is always true when τ > 1. When τ ≤ 1, we need the 239

fact that 240

1
m2

m∑
i=1

m∑
j=1

(yi − yj )(xi − xj ) =
2
m

m∑
i=1

yixi − 2x̄ȳ.

By (7), (8) and (10), we obtain 241∥∥∥∥∥
1

m2

m∑
i=1

m∑
j=1

(yi − yj )(xi − xj ) − 2VX Y

∥∥∥∥∥

≤ 2

∥∥∥∥∥
1
m

m∑
i=1

yixi − E(XY )

∥∥∥∥∥
+ 2M

(
‖x̄ − μX ‖ + |ȳ − μY |

)

≤ 3M 2
(
τ +

√
8τ + τ 2

)

≤ 12M 2√τ .

We finish the proof. � 242

According to Lemma 8, we will adopt the notations 243

V̂XX =
1

2m2

m∑
i=1

m∑
j=1

(xi − xj )(xi − xj )�

and 244

V̂X Y =
1

2m2

m∑
i=1

m∑
j=1

(yi − yj )(xi − xj )

because they provide sample estimates of the covariance matrix 245

VXX and the covariance vector VX Y , respectively. 246

III. UNIFORM BOUND FOR THE SOLUTION PATH 247

In this section, we prove Theorem 1 which states that ŵt are 248

uniformly bounded with large probability. 249

To simplify our presentation, we adopt the notation 250

ζt(i, j) = (yi − ŵ�
t xi) − (yj − ŵ�

t xj )

for each t ∈ N in the sequel. The following proposition gives 251

conditions for the solution ŵt to be uniformly bounded. 252

Proposition 9: Let 0 < ηt ≤ 1
2c0 λm a x

for all t ≥ 1 and h is 253

chosen such that 254

h ≥
(

25p+4cpM
6p+2

c0λ
2p+1
min

)1/2p

. (11)

If the sample {(xi , yi)}m
i=1 satisfies 255

‖V̂XX − VXX ‖ ≤ 1
6
λmin , (12)

then 256

‖ŵt‖ ≤ 3M 2

λmin
.
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Proof: By the definition of V̂XX and V̂X Y and the fact257

Ψ′
+(0) = −c0 , we can write258

∇R(ŵt−1)

=
1

m2

m∑
i=1

m∑
j=1

Ψ′
(

ζ2
t−1(i, j)

2h2

)
ζt−1(i, j)(xi − xj )

=
1

m2

m∑
i=1

m∑
j=1

[
Ψ′

(ζ2
t−1(i, j)

2h2

)
− Ψ′

+(0)
]

ζt−1(i, j)(xi − xj )

− 2c0 V̂X Y + 2c0

(
V̂XX − VXX

)
ŵt−1 + 2c0VXX ŵt−1

:= Q1 + Q2 + Q3 + 2c0VXX ŵt−1 .

We prove the conclusion by induction. First it is obvious259

‖ŵ0‖ = 0 ≤ 3M 2

λm in
. Assume ‖ŵt−1‖ ≤ 3M 2

λm in
. We need to prove260

‖ŵt‖ ≤ 3M 2

λm in
.261

By the definition of ŵt , we have262

ŵt = ŵt−1 − ηt∇R(ŵt−1)

= (I − 2ηtc0VXX )ŵt−1 − ηt(Q1 + Q2 + Q3).

Since ηt ≤ 1
2c0 λm a x

, the matrix I − 2ηtc0VXX is positive263

semidefinite. We have264

‖(I − 2ηtc0VXX )ŵt−1‖ ≤ (1 − 2ηtc0λmin)
3M 2

λmin
.

Since X and Y are bounded by M almost surely and265

‖ŵt−1‖ ≤ 3M 2

λm in
, we have266

‖ζt−1(i, j)‖ ≤ 2M(1 + ‖ŵt−1‖)

≤ 2M

(
1 +

3M 2

λmin

)
≤ 8M 3

λmin
,

where we have used the fact λmin ≤ λmax ≤ M 2 . This together267

with the Lipschitz assumption on Ψ′ gives268

‖Q1‖ ≤ 1
m2

m∑
i=1

m∑
j=1

cp

(
|ζt−1(i, j)|2

2h2

)p

|ζt−1(i, j)| (2M)

≤ 25p+4cpM
6p+4λ−2p−1

min h−2p .

Under the condition (11), we have ‖Q1‖ ≤ c0M
2 . It is easy269

to verify ‖Q2‖ ≤ 4c0M
2 . As for Q3 , under the condition (12),270

we have ‖Q3‖ ≤ c0M
2 . Therefore, we have271

‖ŵt‖ ≤ (1 − 2ηtc0λmin)
3M 2

λmin
+ 6ηtc0M

2 ≤ 3M 2

λmin
.

This finishes the proof. �272

Now Theorem 1 can be proved by combining Proposition 9273

and Lemma 8.274

Proof of Theorem 1: By Lemma 8,275

‖V̂XX − VXX ‖ ≤ 5M 2

√
log(8/δ)

m

with probability 1 − δ. Thus, when m ≥ 900M 4 log(8/δ)
λ2

m in
, the con-276

dition (12) holds with probability at least 1 − δ. By Proposition277

9, we obtain the desired conclusion. �278

IV. ONE STEP ERROR ANALYSIS 279

In this section we show that the estimation error decreases 280

after each iteration step, which plays an essential role for the 281

proof of Theorem 2. 282

Proposition 10: Let 0 < ηt ≤ λm in
12c0 λ2

m a x
for all t ≥ 1 and h ≥ 283(

25 p + 4 cp M 6 p + 4

c0 λ2 p + 1
m in

)1/2p

. If the sample {(xi , yi)}m
i=1 satisfies 284

‖V̂XX − VXX ‖ ≤ 5M 2

√
log(8/δ)

m
≤ 1

6
λmin (13)

and 285

‖V̂X Y − VX Y ‖ ≤ 6M 2

√
log(8/δ)

m
, (14)

then 286

‖ŵt − w∗‖2 ≤ (1 − ηtc0λmin)‖ŵt−1 − w∗‖2

+ ηtC

(
h−4p +

log(8/δ)
m

)

for some constant C independent of m, δ, or h. 287

Proof: By the definition of ŵt , we have 288

‖ŵt − w∗‖2 = ‖ŵt−1 − w∗‖2

− 2ηt(ŵt−1 − w∗)�∇R(ŵt−1)

+ η2
t ‖∇R(ŵt−1)‖2 . (15)

The key to prove Proposition 10 is to estimate ∇R(ŵt−1) 289

appropriately. For this purpose we write 290

∇R(ŵt−1)

=
1

m2

m∑
i=1

m∑
j=1

Ψ′
(

ζ 2
t−1 (i,j )

2h2

)
ζt−1(i, j)(xi − xj )

=
1

m2

m∑
i=1

m∑
j=1

[
Ψ′

(
ζ 2

t−1 (i,j )
2h2

)
− Ψ′

+(0)
]
ζt−1(i, j)(xi − xj )

− c0

m2

m∑
i=1

m∑
j=1

ζt−1(i, j)(xi − xj )

=
1

m2

m∑
i=1

m∑
j=1

[
Ψ′

(
ζ 2

t−1 (i,j )
2h2

)
− Ψ′

+(0)
]
ζt−1(i, j)(xi − xj )

− 2c0

{(
V̂X Y − VX Y

)
−

(
V̂XX − VXX

)
ŵt−1

}

+ 2c0VXX (ŵt−1 − w∗)

:= D1 + D2 + D3 ,

where we have used the fact VX Y = VXX w∗ obtained in 291

Lemma 4. 292

Note that all the conditions for Proposition 9 hold. So we 293

have the bound ‖ŵt‖ ≤ 3M 2

λm in
for all t. For D1 , by the Lipschitz 294

condition of Ψ′ and the bound for ŵt−1 , as we have shown in 295

the proof of Proposition 9, we have 296

‖D1‖ ≤ 25p+4cpM
6p+4λ−2p−1

min h−2p . (16)



IEE
E P

ro
of

6 IEEE TRANSACTIONS ON SIGNAL PROCESSING

For D2 , by (13), (14) and the bound for ŵt−1 , we have297

‖D2‖ ≤ 2c0

(
‖V̂X Y − VX Y ‖ + ‖V̂XX − VXX ‖‖ŵt−1‖

)

≤ 2c0

(
6M 2 +

15M 4

λmin

)√
log(8/δ)

m

≤ 42c0M
4λ−1

min

√
log(8/δ)

m
. (17)

Now we can estimate the second term on the right of (15).298

For notational simplicity let299

C̃ = max{25p+4cpM
6p+4λ−2p−1

min , 42c0M
4λ−1

min}.

By (16) and the elementary inequality ab ≤ a2

2 + b2

2 , we have300

∣∣(ŵt−1 − w∗)�D1
∣∣

≤ c0λmin

2
‖ŵt−1 − w∗‖2 +

1
2c0λmin

‖D1‖2 .

≤ c0λmin

2
‖ŵt−1 − w∗‖2 +

C̃2

2c0λmin
h−4p .

Similarly, by (17), we have301

∣∣(ŵt−1 − w∗)�D2
∣∣

≤ c0λmin

2
‖ŵt−1 − w∗‖2 +

1
2c0λmin

‖D2‖2

≤ c0λmin

2
‖ŵt−1 − w∗‖2 +

C̃2

2c0λmin

log(8/δ)
m

.

These together with the fact that302

(ŵt−1 − w∗)�D3 = 2c0(ŵt−1 − w∗)�VXX (ŵt−1 − w∗)

≥ 2c0λmin‖ŵt−1 − w∗‖2

enable us to obtain303

− 2ηt(ŵt−1 − w∗)�∇R(ŵt−1)

≤ − 2ηtc0λmin‖ŵt−1 − w∗‖2

+
ηtC̃

2

c0λmin

(
h−4p +

log(8/δ)
m

)
. (18)

We turn to estimate the last term on the right hand side of304

(15). We need the trivial bound305

‖D3‖ ≤ 2c0λmax‖ŵt−1 − w∗‖. (19)

Combining the estimates in (16), (17), and (19), we have 306

η2
t ‖∇R(ŵt−1)‖2

≤ 3η2
t (‖D1‖2 + ‖D2‖2 + ‖D3‖2)

≤ 12η2
t c2

0λ
2
max‖ŵt−1 − w∗‖2

+ 3η2
t C̃2

(
h−4p +

log(8/δ)
m

)

≤ ηtc0λmin‖ŵt−1 − w∗‖2

+
1

4c0λmin
ηtC̃

2
(

h−4p +
log(8/δ)

m

)
, (20)

where we used the assumption ηt ≤ λm in
12c0 λ2

m a x
≤ 1

12c0 λm in
. 307

Let C = 5C̃ 2

4c0 λm in
. Plugging the estimates in (18) and (20) into 308

(15), we obtain the desired conclusion. � 309

V. ERROR BOUNDS AND CONVERGENCE RATES 310

To prove Theorem 2, we need two lemmas from [22]. 311

Lemma 11: For v ∈ (0, 1] and θ ∈ [0, 1], 312

T∑
t=1

1
tθ

T∏
j=t+1

(
1 − v

jθ

)
≤ 3

v
.

Lemma 12: For any 0 ≤ 
 < T and 0 < θ < 1, there holds 313

T∑
t=
+1

t−θ ≥ 1
1 − θ

[
(T + 1)1−θ − (
 + 1)1−θ

]
.

Proof of Theorem 2: For a sample satisfying the conditions 314

(13) and (14), Proposition 10 states that 315

‖ŵt − w∗‖2 ≤ (1 − ηtc0λmin)‖ŵt−1 − w∗‖2

+ ηtC

(
h−4p +

log(8/δ)
m

)

for all t. Applying this estimate iteratively we obtain 316

‖ŵT − w∗‖2 ≤ ‖w∗‖2
T∏

t=1

(1 − ηtc0λmin)

+ C

(
h−4p +

log(8/δ)
m

) T∑
t=1

T∏
j=t+1

(1 − ηj c0λmin)ηt .

Since ηt = ηt−θ , by the elementary inequality 1 − u ≤ 317

exp(−u) and Lemma 12 with 
 = 0, we have 318

T∏
t=1

(1 − ηtc0λmin) ≤ exp

(
−c0λmin

T∑
t=1

ηt

)

≤ exp

(
ηc0λmin

(
1 − (T + 1)1−θ

)
1 − θ

)

≤ exp

(
ηc0λmin

(
1 − T 1−θ

)
1 − θ

)
.
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Lemma 11 with v = ηc0λmin yields319

T∑
t=1

T∏
j=t+1

(1 − ηj c0λmin)ηt

= η

T∑
t=1

1
tθ

T∏
j=t+1

(
1 − ηc0λmin

jθ

)
≤ 3

c0λmin
.

Therefore,320

‖ŵT − w∗‖2 ≤ ‖w∗‖2 exp
(

ηc0λmin(1 − T 1−θ )
1 − θ

)

+
3C

c0λmin

(
h−4p +

log(8/δ)
m

)

≤ C ′
{

exp
(
− ηc0 λm in T 1−θ

1−θ

)
+ h−4p +

log(8/δ)
m

}
,

where C ′ = ‖w∗‖2 exp
(

ηc0 λm in
1−θ

)
+ 3C

c0 λm in
. The proof of The-321

orem 2 is completed after noticing that the conditions (13) and322

(14) hold with probability at least 1 − δ, as are guaranteed by323

Lemma 8. �324

VI. SIMULATIONS325

In this section we study the empirical performance of the326

gradient descent method for MEE by simulations and compare327

it with our theoretical analysis. On one hand we expect the328

theoretical analysis provides some guidance to the empirical329

implementation. On the other hand, since the theoretical anal-330

ysis is based on upper bounds which might be far from tight,331

it is important to understand the gap between the theory and332

empirical applications.333

In the simulation, let x ∈ R10 and the model be defined by334

Y = w�
∗ x + ε with w∗ = [1 −1 1 −1 1 −1 1 −1 1 −1]� and335

x ∼ N(0, I10). We consider two types of noise. The first type336

is the Gaussian noise ε ∼ N(0, cw�
∗ x) for each given x. The337

second type is the generalized Gaussian noise with a probabil-338

ity density function f(ε) ∝ exp(−|cε|0.3). It is a typical heavy339

tailed distribution and has been employed in [2] to explore the340

effectiveness of a minimum total error entropy algorithm. For341

both noise models we select the constant c so that the signal to342

noise ratio equal to one. As indicated by Theorem 2, a small343

constant step size can be used to guarantee convergence and the344

scaling parameter should be large enough. In our simulations345

we have chosen ηt =
√

0.005π (so that it satisfies the condition346

in Theorem 2) and h = 10. We let the sample size m vary from347

50 to 500. The simulation results based on 100 repeated exper-348

iments were reported in Figs. 1 and 2 for the two noise models,349

respectively.350

In Figs. 1(a) and 2(a) we report the change of the mean351

squared error as the number of iterations increases. In Figs. 1(b)352

and 2(b) we compare the mean squared error with iteration to353

convergence and the mean squared error with optimal itera-354

tion (i.e., the number of iterations that leads to minimal mean355

squared error). In Figs. 1(c) and 2(c) we compare the num-356

ber of iterations to convergence and the optimal number of357

Fig. 1. Simulation results for Gaussian noise.

iterations. Similar results are seen regardless of the noise types. 358

All these results indicate that the optimal solution can be 359

achieved by early stopping the gradient descent iteration while 360

further increasing the number of iterations may hurt the learning 361

performance. The performance degradation is notable in a small 362

sample setting while negligible in a large sample setting. There- 363

fore, early stopping is not only sufficient but also necessary 364

when the sample size is small. An interesting observation is that 365

the number of iterations to convergence and the optimal number 366

of iterations tend to coincide when the sample size is large. A 367

plausible explanation is that when the sample size is large, the 368

empirical risk approximates the expected risk well and thus ŵ 369

approximates w∗ well. So the optimal solution does require ŵt 370

to converge to ŵ. We observed that the number of iterations to 371

convergence decreases as the sample size increases. Although it 372
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Fig. 2. Simulation results for generalized Gaussian noise.

does not contradict our analysis, it does seem surprising. We do373

not have an explanation at the moment and would leave it for374

future study.375

Recall that the upper bound in Theorem 2 implies the suffi-376

ciency of early stopping for an optimal solution in a large sample377

size setting. Moreover, although it is hard to verify the optimal378

number of iterations is of order O(log m), it does increase very379

slowly according Figs. 1(c) and 2(c).380

Theorem 2 also provides useful insight on the choice of the381

step size. The upper bound of η can be estimated from the382

sample. Choosing η around half of the upper bound usually383

works well in practice. However, there is a gap between the384

theoretical analysis and empirical applications regarding the385

choice of the scaling parameter h. The theoretical lower bound 386

on h is too restrictive. In practice it is found that a moderately 387

large h is good and a very large h is not necessary. 388

VII. DISCUSSIONS 389

To derive our results, we have assumed that the covariance 390

matrix VXX of the input variable X is non-degenerate. This 391

condition, however, may not be true in many situations. A very 392

typical model is the classical linear regression model where an 393

intercept is included: 394

Y = β0 + β�
1 Z + ε (21)

with β0 ∈ R, β1 ∈ Rn , and Z a vector valued random variable 395

containing n explanatory variables. In this case, w∗ = [β0 β�
1 ]� 396

and X = [1 Z�]�. Note that 397

VXX =

(
0 0

0 VZZ

)
.

So it is always degenerate. 398

When VXX is degenerate, we cannot prove the convergence 399

of ŵt to w∗. Instead, we need to consider their projections onto 400

the principal component space. Let U denote the subspace ofRn 401

spanned by the principal components associated to the positive 402

eigenvalues and PU the projection onto U . Let λmin denote the 403

smallest positive eigenvalue. We can prove 404

λmin‖PU (w − w∗)‖2 ≤ (w − w∗)�VXX (w − w∗)

≤ λmax‖PU (w − w∗)‖2 .

By this relationship and the techniques developed in this paper 405

and [23], we can prove the convergence of PU (ŵt) to PU (w∗). 406

This guarantees the variance of ŵ�
t X converges to the variance 407

w�
∗ X and thus ŵ�

t X plus an appropriate intercept provides 408

good predictive performance. In the model (21), if VZZ is posi- 409

tive definite, we see ŵt estimates the slope coefficients β1 . 410

As for the implementation of the algorithm, we remark that 411

if VXX is non-degenerate, the initial point is not necessarily 412

chosen as ŵ0 = 0. The convergence holds true for any starting 413

point. If VXX is degenerate, the convergence of ŵt to w∗ can 414

be proved if the starting value is in the principal components 415

space U. Actually, since xi − xj is in U , all ŵt are in U . Thus, 416

PU (ŵt) = ŵt and the convergence of ŵt to PU (w∗) is exactly 417

the convergence of PU (ŵt) to PU (w∗). However, if the starting 418

point has a nonzero components normal to U , it will never 419

diminish during the iteration process. 420

We have focused on linear regression models in this paper. 421

Note that the MEE principle can be extended to nonlinear re- 422

gression by the kernel trick [14], [17]. Regularization theory 423

plays an important role to overcome the overfitting problem in 424

this case. It would be interesting to study the use of gradient 425

descent for the kernel MEE method in the future. 426
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