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Abstract

Pairwise learning usually refers to a learning task which involves a loss
function depending on pairs of examples, among which most notable ones
include bipartite ranking, metric learning and AUC maximization. In this
paper, we study an online algorithm for pairwise learning with a least-square
loss function in an unconstrained setting of a reproducing kernel Hilbert s-
pace (RKHS), which we refer to as the Online Pairwise lEaRning Algorith-
m (OPERA). In contrast to existing works [18, 36] which require that the
iterates are restricted to a bounded domain or the loss function is strongly-
convex, OPERA is associated with a non-strongly convex objective function
and learns the target function in an unconstrained RKHS. Specifically, we
establish a general theorem which guarantees the almost surely convergence
for the last iterate of OPERA without any assumptions on the underlying
distribution. Explicit convergence rates are derived under the condition of
polynomially decaying step sizes. We also establish an interesting property
for a family of widely-used kernels in the setting of pairwise learning and il-
lustrate the above convergence results using such kernels. Our methodology
mainly depends on the characterization of RKHSs using its associated inte-
gral operators and probability inequalities for random variables with values
in a Hilbert space.

1 Introduction

For any T ∈ N, the input space X is a compact domain of Rd and the output space
Y ⊆ R. In the standard problems of regression and classification [14, 32], one con-
siders learning from a set of examples z = {zi = (xi, yi) ∈ X × Y : i = 1, 2, . . . , T}
drawn independently and identically (i.i.d) from an unknown distribution ρ on
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Z = X × Y . Associated with a specific learning problem, typically a univariate
loss function `(h, x, y) is used to measure the quality of a hypothesis function
h : X → Y .

This paper is motivated by the recently growing interest in an important family
of learning problems which, for simplicity, we refer to as pairwise learning problems.
In contrast to classical regression and classification, such learning problems involve
pairwise loss functions, i.e. the loss function depends on a pair of examples which
can be expressed by `(f, (x, y), (x′, y′)) for a hypothesis function f : X × X → R.
Many machine learning tasks can be formulated as pairwise learning problems.
Such tasks include ranking [1, 10, 13, 17, 25], similarity and metric learning [5, 8,
11, 35, 40], AUC maximization [44], and gradient learning [21, 22]. For instance,
the task of ranking is to learn a ranking function capable of predicting an ordering
of objects according to some attached relevance information. It generally involves
the use of a misranking loss `(f, (x, y), (x′, y′)) = I{(y−y′)f(x,x′)<0} or its surrogate
loss `(f, (x, y), (x′, y′)) = (1− (y−y′)f(x, x′))2, where I(·) is the indicator function.
The goal of ranking is to find a ranking rule f in a hypothesis space H from the
available data that minimizes the expected misranking risk

R(f) =

∫∫
Z×Z

`(f, (x, y), (x′, y′))dρ(x, y)dρ(x′, y′). (1.1)

In this paper, we assume that the hypothesis function f : X ×X → R for pairwise
learning belongs to a reproducing kernel Hilbert space (RKHS) defined on the prod-
uct space X 2 = X ×X . Specifically, let K : X 2×X 2 → R be a Mercer kernel, i.e. a
continuous, symmetric and positive semi-definite kernel, see e.g. [14, 32]. Accord-
ing to [2], the RKHSHK associated with kernel K is defined to be the completion of
the linear span of the set of functions {K(x,x′)(·) := K((x, x′), (·, ·)) : (x, x′) ∈ X 2}
with an inner product satisfying the reproducing property, i.e., for any x′, x ∈ X
and f ∈ HK , 〈K(x,x′), f〉K = f(x, x′).

Recently, a large amount of work focuses on pairwise learning algorithms in the
batch setting in the sense that the algorithm uses the training data z at once. A
general regularization scheme in a RKHS HK for pairwise learning can be formu-
lated as

fz,λ = arg min
f∈HK

{
1

T (T − 1)

T∑
i,j=1
i 6=j

`(f, (xi, yi), (xj, yj)) +
λ

2
‖f‖2K

}
. (1.2)

where λ > 0 is a regularization parameter. The above general formulation was
studied for ranking [1, 25] and metric learning [5, 8] under choices of different
pairwise kernels (see further discussions in Subsection 2.1). Their generalization
analysis was established using the concept of algorithmic stability [1], robustness
[5] or U-statistics and U-process [8, 13, 25]. However, there is relatively little
work related to online algorithms for pairwise learning, despite of its potential
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capability of dealing with large datasets. Until most recently, [36] established the
first generalization analysis of online learning methods for pairwise learning in the
linear case. In particular, they showed online to batch conversion bounds hold true
which are similar to those in the univariate loss function case [9].

In this paper, we study an Online Pairwise lEaRning Algorithms (OPERA)
with a least-square loss function in a reproducing kernel Hilbert space (RKHS).
In particular, a general convergence theorem is established which guarantees the
almost surely convergence of the last iterate of OPERA. Explicit convergence rates
are derived under the condition of polynomially decaying step sizes. In contrast to
existing works [18, 36, 37] which require that the iterates are restricted to a bound-
ed domain or the loss function is strongly-convex, OPERA is associated with a
non-strongly convex objective function and learns the target function in an uncon-
strained RKHS (see more discussions in Section 3). Our novel methodology mainly
depends on the characterization of RKHSs using the associated integral operators
and probability inequalities for random variables with values in the Hilbert space
of Hilbert-Schmidt operators.

The paper is organized as follows. Section 2 introduces OPERA and presents
main results together with particular examples of specific pairwise kernels. Section
3 discusses the related work. Section 4 presents novel error decomposition for
analyzing OPERA and establishes the associated technical estimates. The main
results are proved in Section 5. The paper concludes in Section 6. The proofs for
technical lemmas are postponed to the Appendix.

2 Main Results

In this section, we introduce an online pairwise learning algorithm associated with
the least-square loss `(f, (x, y), (x′, y′)) = (f(x, x′)−y+y′)2 in a reproducing kernel
Hilbert space HK , and state our main results. In particular, denote the true risk,
for any function f : X × X → R, by

E(f) =

∫∫
Z×Z

(f(x, x′)− y + y′)2dρ(x, y)dρ(x′, y′).

Define f̃ρ by the difference of two standard regression functions, i.e.

f̃ρ(x, x
′) =

∫
X
ydρ(y|x)−

∫
X
ydρ(y|x′) = fρ(x)− fρ(x′). (2.1)

Denote by L2
ρ(X 2) the space of square integrable functions on the domain X ×X ,

i.e.

L2
ρ(X 2) =

{
f : X × X → R : ‖f‖ρ =

(∫∫
X×X
|f(x, x′)|2dρX (x)dρX (x′)

)1/2
<∞

}
,
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where ρX is the marginal distribution of ρ over X . Similar to the standard least-
square regression problem (see e.g. [12]), the following property holds true

E(f)− E(f̃ρ) = ‖f − f̃ρ‖2ρ.

Consequently, f̃ρ is the minimizer of the functional E(·) among all measurable func-

tions. Through out this paper, we refer to f̃ρ as the pairwise regression function.

In this paper, we study the following online pairwise learning algorithm which
aims to learn the pairwise regression function f̃ρ from data.

Definition 1. Given the i.i.d. generated training data z = {zi = (xi, yi) : i =
1, 2, . . . , T}, the Online Pairwise lEaRning Algorithm (OPERA) is given by f1 =
f2 = 0 and, for 2 ≤ t ≤ T ,

ft+1 = ft −
γt
t− 1

t−1∑
j=1

(ft(xt, xj)− yt + yj)K(xt,xj), (2.2)

where {γt > 0 : t ∈ N} is usually referred to as the sequence of step sizes.

OPERA is similar to the online projected gradient descent algorithm in [18, 36],
i.e., f0 = 0 and η = R2

T
, and, for 1 ≤ t ≤ T ,

ft = ProjBR
[
ft−1 −

η

t− 1

t−1∑
j=1

(ft(xt, xj)− yt + yj)K(xt,xj))
]
, (2.3)

where ProjBR(·) denotes the projection to a prescribed ball BR = {‖f‖K ≤ R : f ∈
HK} with radius R. In contrast, OPERA does not have this additional projection
step and is implemented in the unconstrained setting.

The sequence {ft : t = 1, 2, . . . , T + 1} is usually referred to as the learning
sequence generated by OPERA. We call the above algorithm OPERA an online
learning algorithm in the sense that it only needs a sequential access to the training
data. Specifically, let zt = {z1, z2, . . . , zt} and at each time step t + 1, OPERA
presumes a hypothesis ft ∈ HK upon which a new data zt is revealed. The quality
of the pairwise function ft is estimated on the local empirical error:

Ê t(ft) =
1

2(t− 1)

t−1∑
j=1

(ft(xt, xj)− yt + yj)
2. (2.4)

The next iterate ft+1 given by equation (2.2) is exactly obtained by performing a
gradient descent step from the current iterate ft based on the gradient of the local
empirical error, which is given by

∇Ê t(f)|f=ft =
1

t− 1

t−1∑
j=1

(ft(xt, xj)− yt + yj)K(xt,xj).

4



Here, ∇Ê t(·) denotes the functional gradient of the functional Ê t in the RKHS HK .

Now denote κ := sup
x,x∈X

√
K((x, x′), (x, x′)), and throughout the paper we as-

sume that |y| ≤ M almost surely for some M > 0. In addition, we introduce the
notion of K-functional [6] in approximation theory as

K(s, f̃ρ) := inf
f∈HK

{‖f − f̃ρ‖ρ + s‖f‖K}, s > 0. (2.5)

We can establish the following general theorem about the convergence of the last
iterate fT+1 generated by OPERA.

Theorem 1. Let γt = 1
µ
t−θ for any t ∈ N with some θ ∈ (1

2
, 1) and µ ≥ κ2, and

{ft : t = 1, . . . , T + 1} be given by OPERA (2.2). For any 0 < δ < 1, we have with
probability 1− δ

‖fT+1 − f̃ρ‖ρ ≤ K
(√

6µ(1 + κ)T−
1−θ
2 , f̃ρ

)
+ Cθ,κ T

−min(θ− 1
2
, 1−θ

2
) log T log(8T/δ),

(2.6)
where Cθ,κ depends on κ, θ but independent of T (see its explicit form in the proof).

Recall the well-known result (e.g. [6, 41]) that

lim
s→0+

K(s, f̃ρ) = inf
f∈HK

‖f − f̃ρ‖ρ.

Then, assuming θ ∈ (1/2, 1) and letting T → ∞ in inequality (2.6), we can prove
the following corollary.

Corollary 1. If γt = 1
µ
t−θ for any t ∈ N with θ ∈ (1

2
, 1) and µ ≥ κ2, and

{ft : t = 1, . . . , T + 1} be given by OPERA (2.2). Then, ‖fT+1 − f̃ρ‖ρ converges to

inff∈HK ‖f − f̃ρ‖ρ almost surely.

Let us discuss the implication of the above corollary. Recall that a kernel is uni-
versal if its associates RKHS is dense in the space of continuous functions on X ×X
under the uniform norm. Typical examples of universal kernels [20, 32] include the

Gaussian kernel K((x1, x2), (x̂1, x̂2)) = exp(−‖(x
1,x2)−(x̂1,x̂2)‖2

σ
) and the Laplace ker-

nel K((x1, x2), (x̂1, x̂2)) = exp(−‖(x
1,x2)−(x̂1,x̂2)‖

σ
). In this case, inff∈HK ‖f−f̃ρ‖ρ = 0,

which equivalently implies that, as T →∞, ‖fT+1 − f̃ρ‖ρ → 0 almost surely.

We can derive explicit error rates under some regularity assumptions on the
pairwise regression function. The regularity of f̃ρ can be typically measured by the
integral operator LK : L2

ρ(X 2)→ L2
ρ(X 2) defined by

LKf =

∫∫
X×X

f(x, x′)K(x,x′)dρX (x)dρX (x′).

Since K is a Mercer kernel, LK is compact and positive. Therefore, the fractional
power operator LβK is well-defined for any β > 0. In particular, we know from

[12, 14] that L
1/2
K (L2

ρ(X 2)) = HK .
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Theorem 2. Let {ft : t = 1, . . . , T + 1} be given by OPERA (2.2). Suppose

f̃ρ ∈ LβK(L2
ρ) with some β > 0 and choose γt = 1

µ
t−min

{
2β+1
2β+2

, 2
3

}
with some µ ≥ κ2.

Then, for any 0 < δ < 1 we have, with probability 1− δ, that

‖fT+1 − f̃ρ‖ρ ≤ Cβ,κT
−min

(
β

2β+2
, 1
6

)
log T log(8T/δ), (2.7)

where Cβ,κ depends on β, κ and µ but independent of T (see the explicit form in
the proof).

The algorithm OPERA depends on selecting an appropriate pairwise kernel for
a given learning task. In the next subsection, we consider a specific class of pairwise
kernels and their associated RKHSs which are induced by a kernel G : X ×X → R.

2.1 Examples with specific pairwise kernels

Observe that the pairwise regression function f̃ρ(x, x
′) = fρ(x)− fρ(x′), and hence

a natural motivation is to use a pairwise function f(x, x′) = g(x) − g(x′) to ap-

proximate the desired function f̃ρ, where g ∈ HG with G : X × X → R being a
kernel.

Indeed, we can introduce a specific pairwise kernel K such that any function
f ∈ HK can be represented by as f(x, x′) = g(x)− g(x′) with g ∈ HG. Specifically,
given the univariate kernel G, let the pairwise function K : X 2 ×X 2 → R defined,
for any x1, x2, x̂1, x̂2 ∈ X , by

K((x1, x2), (x̂1, x̂2)) = G(x1, x̂1) +G(x2, x̂2)−G(x1, x̂2)−G(x2, x̂1)
= 〈Gx1 −Gx2 , Gx̂1 −Gx̂2〉G.

(2.8)

It can be easily verified that K defined by (2.8) is positive semi-definite on X 2×X 2,
and thus K is a (pairwise) Mercer kernel on X×X if G is a Mercer kernel on X . The
following proposition characterizes the relationship between HK and the original
RKHS HG.

Proposition 1. Let G : X ×X → R be a Mercer kernel and its associated pairwise
kernel be induced by (2.8). Then, the following statements hold true:

(a) Assume the constant function 1X ∈ HG and let IG = span{1X ∈ HG} con-
taining all constant functions and I⊥G = {g ∈ HG : 〈g, 1X 〉G = 0} be the subspace
orthogonal to IG. Then, the mapping = : I⊥G → HK defined by =(g)(x1, x2) =
g(x1)− g(x2) is a bijection with property ‖=(g)‖K = ‖g‖G.

(b) If the constant function 1X 6∈ HG, then the mapping = : HG → HK defined by
=(g)(x1, x2) = g(x1)− g(x2) is a bijection with property ‖=(g)‖K = ‖g‖G.
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Part (b) used the assumption 1X 6∈ HG. Various kernels induce RKHSs satisfy-
ing this assumption. For instance, the homogeneous linear kernel G(x, x′) = x>x′

and the Gaussian kernel G(x, x′) = exp(−‖x−x
′‖2

σ
) [33] are such kernels. However,

in general the assumption in part (b) is not true, and thus only part (a) holds true.

From the above proposition, we can rewrite OPERA (2.2) as g1 = g2 = 0 and,
for 2 ≤ t ≤ T ,

gt+1 = gt − γt
[ 1

t− 1

t−1∑
j=1

(gt(xt)− gt(xj)− yt + yj)(Gxt −Gxj)
]
. (2.9)

The learning sequence {ft : t = 1, 2, . . . , T + 1} of OPERA can be recovered by

ft(x
1, x2) = =(gt)(x

1, x2) := gt(x
1)− gt(x2), ∀x1, x2 ∈ X . (2.10)

Denote

L2
ρ(X ) =

{
f : X → R : ‖f‖ρ =

(∫
X
|f(x)|2dρX (x)

)1/2
<∞

}
,

and, by applying Proposition 1, we can see that the K-functional K defined by
(2.5) is reduced to

KG(s, f̃ρ) :=

{
infg∈I⊥G{‖=(g)− f̃ρ‖ρ + s‖g‖G}, if 1X ∈ HG

infg∈HG{‖=(g)− f̃ρ‖ρ + s‖g‖G}, otherwise.
(2.11)

Equipped with the above notations, we can obtain the following theorem.

Theorem 3. Let γt = t−θ

κ2
for any t ∈ N with θ ∈ (1

2
, 1) and {gt : t = 1, 2, . . . , T+1}

be given by algorithm (2.9). Then, the following statements hold true.

(a) Let the K-functional associated with HG be defined by (2.11). Then, for any
1 < δ < 1 we have, with probability 1− δ, that

‖=(gT+1)− f̃ρ‖ρ ≤ KG
(√

6κ(1 +κ)T−
1−θ
2 , f̃ρ

)
+Cθ,κ T

−min(θ− 1
2
, 1−θ

2
) log T log(8T/δ).

(b) Suppose 1X 6∈ HG and fρ ∈ LβG(L2
ρ(X )) with some 0 < β ≤ 1/2 and choose

γt = 1
κ2
t−

2β+1
2β+2 . Then, for any 0 < δ < 1 we have, with probability 1− δ, that

‖=(gT+1)− f̃ρ‖ρ
]
≤ C̃β,κT

− β
2β+2 log T log(8T/δ). (2.12)

The above theorem implies the following result. Suppose that the original
univariate kernel G is a Gaussian kernel in (2.8). Choosing γt = t−θ

κ2
with θ ∈

(1/2, 1) in (2.9), by a similar argument to the proof for Corollary 1 we can have

‖=(gT+1)− f̃ρ‖ρ → 0 almost surely as T →∞. It remains a question to us whether
the assumption 1X 6∈ HG in part (b) of the above theorem can be removed .
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3 Related work and Discussions

In this section, we discuss the related work on pairwise learning in the batch setting
and stochastic online learning algorithms in the univariate case.

Firstly, we briefly review existing work on pairwise learning, among which most
of them addressed the batch setting. In [25], the generalization analysis for the gen-
eral formulation (1.2) was conducted using empirical process and U-statistics (see
discussions in Example 3 there). Specifically, the author proved nice generaliza-
tion bounds for the excess risk of such estimators with rates faster than O(1/

√
T ),

where T is the sample number. In Section 5.2 of [1], the following regularization
formulation was studied for ranking:

min
g∈HG

{
2

T (T − 1)

T∑
i,j=1
i<j

ψ(g(xi)− g(xj), yi − yj) +
λ

2
‖g‖2G

}
, (3.1)

where HG denotes the RKHS on X with inner product ‖ · ‖G and ψ is a ranking
loss function (see Definition 1 there). This formulation can be regarded as a special
formulation of the general framework (1.2) since, by Proposition 1, one can choose
K((x1, x2), (x̂1, x̂2)) = 〈Gx1 − Gx2 , Gx̂1 − Gx̂2〉G, and then, for any f ∈ HK , there
exists a g ∈ HG such that f(xi, xj) = g(xi)− g(xj) with property ‖f‖K = ‖g‖G. In
contrast to the batch setting, there is relatively little work on online algorithms for
pairwise learning. Most recently, in [36] and [18] online to batch conversion bounds
were nicely established for pairwise learning, which shares the same spirit of [9] in
the univariate case. Specifically, Kar et al. [18] proved the following result. 1

Theorem A[18] Let f1, f2, . . . , fT−1 be an ensemble of hypotheses from the space
H generated by an online learning algorithm with a B-bounded loss function ` :
H×Z ×Z → [0, B] that guarantees a regret bound of <T , i.e.

T∑
t=2

1

t− 1

t−1∑
τ=1

`(ft−1, zt, zτ ) ≤ inf
f∈H

T∑
t=2

1

t− 1

t−1∑
τ=1

`(f, zt, zτ ) + <T . (3.2)

Then, for any 0 < δ < 1, we have with probability 1− δ,

1

T − 1

T∑
t=2

E`(ft) ≤ inf
f∈H
E`(f) +

4

T − 1

T∑
t=2

Rt−1(` ◦ H) +
<T
T − 1

+ 6B

√
log T

δ

T − 1
,

where, for any f ∈ H, E`(f) =
∫∫
Z×Z `(f, z, z

′)dρ(z)dρ(z′), and the Rademacher

averages RT (` ◦ H) is defined as Rt−1(` ◦ H) = E
[
suph∈H

1
t−1
∑t−1

τ=1 ετ`(h, z, zτ )
]

with the expectation being over ετ , z, and zτ .

1The authors mainly focused on the linear case. However, the results there can be easily
extended to the kernelized case.
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For a fair comparison with our results, let the loss function `(f, (x, y), (x′, y′)) =
(f(x, x′)−y+y′)2 and the hypothesis space H be a bounded ball in an RKHS HK ,
i.e. H = BR := {f ∈ HK : ‖f‖K ≤ R} with some R > 0. In this case, the constant
B in Theorem A is given by B = (2M +κR)2, and `(·, z, z′) is Lipschitz continuous
with constant L = 2M + κR. By standard techniques to estimate the Rademacher
averages [4], we can have Rt(` ◦H) ≤ O(R

2
√
t
) with R sufficiently large. Then, using

an argument similar to the Section 5.3 of [37] we know that the online projected
gradient descent algorithm (2.3) enjoys the regret bound <T ≤ (2M + κR)R

√
T .

Putting this regret bound with the above estimation for the Rademacher averages
together, from Theorem A we get, with probability 1− δ, that

1
T−1

∑T
t=2 E(ft)− inf

‖f‖K≤R
E(f) ≤ O

(
R2

T

∑T
t=2

1√
t

+ R2
√
T

+R2
√

log T
δ
/(T − 1)

)
≤ O

(
R2

√
log T

δ

T

)
.

Let fT = 1
T−1

∑T
t=2 ft and then we have E(fT ) ≤ 1

T−1
∑T

t=2 E(ft). Consequently,

E(fT )− inff∈H E(f) ≤ O
(
R2

√
log T

δ

T

)
. This estimation combined with the fact, for

any f , that E(f)− E(f̃ρ) = ‖f − f̃ρ‖2ρ implies that

‖fT − f̃ρ‖2ρ ≤ inf
‖f‖K≤R

‖f − f̃ρ‖2ρ +O
(
R2

√
log
(T
δ

)
/T
)
. (3.3)

The first term on the righthand side of the above inequality is known as ap-
proximation error. Suppose the pairwise regression function f̃ρ ∈ LβK(L2

ρ) with

some 0 < β < 1/2. Then, we know from [14, 29] that inf‖f‖K≤R ‖f − f̃ρ‖2ρ ≤

R−
4β

1−2β ‖L−βK f̃ρ‖
2

1−2β
ρ , which implies that ‖fT − f̃ρ‖2ρ ≤ O

(
R−

4β
1−2β ‖L−βK f̃ρ‖

2
1−2β
ρ +

R2

√
log
(
T
δ

)
/T
)
. Choosing R = T

1−2β
4 implies, with probability 1− δ, that

‖fT − f̃ρ‖2ρ ≤ O
(
T−β

(
log
√
T/δ + ‖L−βK f̃ρ‖

2
1−2β
ρ

))
. (3.4)

From Theorem 2, for 0 < β < 1/2 the last iterate of OPERA has the convergence
rate:

‖fT − f̃ρ‖2ρ ≤ O
(
T−

β
1+β (log T log(8T/δ))2

)
. (3.5)

Comparing the rates in (3.4) and (3.5), we can see that our rate (3.5) for the
last iterate of OPERA is suboptimal to that of the average of iterates generat-
ed by algorithm (2.3). However, the online projected gradient descent algorithm
(2.3) requires that all iterates are restricted to a prescribed ball with radius R,
which leads to a challenging question on how to tune R appropriately according
to the real-data at hand. In addition, the analysis techniques [18, 36, 37] critically
depend on the bounded-domain assumption and do not directly apply to the un-
constrained setting here. OPERA is performed in the unconstrained setting and
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hence is parameter-free expect the choice of step sizes. Indeed, theorems in Section
2 show that choosing γt = O(t−θ) with 1/2 < θ < 1 always guarantees that the last
iterate of OPERA converges almost surely without additional assumptions on the
underlying distribution ρ. It should be mentioned the above comparison assumes
that the number of examples T is fixed and is known in advance. In the general
online learning setting, the number of examples is not known. In this sense, the
above comparison is only for the theoretical purpose.

Secondly, we discuss the related work on (stochastic) online learning algorithms
in the univariate case. There is a large amount work on (stochastic) online learning
algorithms in the univariate case [7, 9, 27, 28, 41, 42] or under a more general name
called stochastic approximation [3, 23, 26]. The main idea is to use a randomized
gradient to replace the gradient of the empirical loss, where the original idea dates
back to the work [26] in the 1950s. Most of approaches in stochastic approximation
assume the hypothesis space is of finite dimensional and the gradient is bounded. In
fact, when the hypothesis space is of finite dimensional, a simple averaging scheme
for stochastic gradient descent [3] can achieve the optimal rate O( 1

T
) under the

assumption that the covariance operator
∫
X xx

>dρX (x) is invertible. Stochastic
online learning with a least square loss in an infinite-dimensional RKHS has been
pioneered by [28] and the results were established for general loss functions by [42],
in which the objective functions are all strongly convex.

OPERA (2.2) shares a similar idea with the above algorithms in the univariate
case in the sense that, at each iteration, it uses a computationally-cheap gradient
estimator to replace the true gradient. However, the objective function of OPERA
is not strongly convex and the hypothesis space HK is not bounded. In particular,
OPERA is more close to the online algorithm in [41], where the authors studied
the following stochastic gradient descent in a RKHS HG:{

g1 = 0 and ,∀t ∈ 1, 2, . . . , T
gt+1 = gt − γt(gt(xt)− yt)Gxt .

The analysis in [41] heavily depends on the fact that the randomized gradien-
t (gt(xt) − yt)Gxt is, conditionally on {z1, z2, . . . , zt−1} , an unbiased estimator
of the true gradient

∫∫
X (gt(x) − y)Gxdρ(x, y). However, the randomized gradient

1
t−1
∑t−1

j=1(ft(xt, xj)− yt + yj)K(xt,xj) in OPERA (2.2) is not an unbiased estimator

of the true gradient
∫∫
X×X ft(x, x

′) − y + y′)K(x,x′)dρ(x, y)dρ(x′, y′), even condi-
tionally on {z1, z2, . . . , zt−1}. This introduces the main difficulty in analyzing its
convergence. Our new methodology relies on the novel error decomposition pre-
sented in the next section. This enable us to overcome this analysis difficulty by
further employing the characterization of RKHSs using the associated integral op-
erators and probability inequalities for random variables with values in the Hilbert
space of Hilbert-Schmidt operators.
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4 Error Decomposition and Technical Estimates

This section mainly presents an error decomposition for OPERA which is critical
to prove the main results in Section 2.

To this end, we introduce some necessary notations. For any 1 ≤ j < t, denote
the linear operator

L(xt,xj) = 〈·, K(xt,xj)〉KK(xt,xj) : HK → HK

by L(xt,xj)(g) = g(xt, xj)K(xt,xj) for any g ∈ HK , and let L̂t = 1
t−1
∑t−1

j=1 L(xt,xj). In
addition, define

S(zt,zj) = (yt − yj)K(xt,xj), and Ŝt =
1

t− 1

t−1∑
j=1

S(zt,zj).

We also define an auxiliary operator L̃t =

∫
X
L̂tdρ(zt), i.e., for any f ∈ HK

L̃t(f) =
1

t− 1

t−1∑
`=1

∫
X
f(x, x`)K(x,x`)dρX (x).

Similarly, define

S̃t =

∫
X
Ŝtdρ(zt) =

1

t− 1

t−1∑
`=1

∫
X

(fρ(x)− y`)K(x,x`)dρX (x).

In addition, let

Ât = (L̃t − LK)ft − (S̃t − LK f̃ρ), B̂t = (L̂t − L̃t)ft − (Ŝt − S̃t).

With these notations, for any t ≥ 2 we can rewrite equality (2.2) as

ft+1 = ft − γt(L̂t(ft)− Ŝt) = (I − γtLK)ft − γt(L̂t − LK)(ft) + γtŜt,

and

ft+1 − f̃ρ = (I − γtLK)(ft − f̃ρ)− γt(L̂t − LK)ft + γt(Ŝt − LK f̃ρ)
= (I − γtLK)(ft − f̃ρ)− γtÂt − γtB̂t.

(4.1)

For any t, j ∈ N denote ωtj(Lk) =
∏t

`=j(I − γ`LK) for any j ≤ t and we use the

conventional notation, for any t ∈ N, ωtt+1(Lk) = I and
∑t

`=t+1 γ` = 0.

Consequently, from the above equality we can derive, for any t ≥ 2, that

ft+1 − f̃ρ = −ωt2(LK)(f̃ρ)−
t∑

j=2

γjω
t
j+1(LK)Âj −

t∑
j=2

γjω
t
j+1(LK)B̂j (4.2)

11



The above error decomposition is similar to the well-known ones in learning the-
ory in order to perform the error analysis for learning algorithms with univari-
ate loss functions, see e.g. [15, 28, 38, 39]. The term ωt2(LK)(f̃ρ) is determin-
istic which is usually referred to as approximation error and the other term, i.e.∑t

j=2 γjω
t
j+1(LK)Âj +

∑t
j=2 γjω

t
j+1(LK)B̂j, depends on the random samples which

is often called the sample error. Consequently, from the error decomposition (4.2)
we have

‖ft+1 − f̃ρ‖ρ ≤ ‖ωt2(LK)(f̃ρ)‖ρ + ‖
∑t

j=2 γjω
t
j+1(LK)Âj‖ρ

+‖
∑t

j=2 γjω
t
j+1(LK)B̂j‖ρ.

(4.3)

In the following subsections we estimate the terms on the right-hand side of in-
equality (4.3).

4.1 Estimation of the sample error

We now turn our attention to estimating the sample error, i.e. the last two terms
on the right-hand side of inequality (4.3). To this end, we first establish some
useful lemmas. The following lemma gives an upper-bound of the learning sequence
{ft : t ∈ N} under theHK norm, which is mainly inspired by a similar estimation in
[19] for bounding the iterates of online gradient descent algorithm in the univariate
case.

Lemma 1. Let the learning sequence {ft : t ∈ N} be given by OPERA (2.2) and
assume, for any t ∈ N, that γtκ

2 ≤ 1. Then we have

‖ft‖K ≤ 2M

√√√√ t−1∑
j=2

γj, ∀t ∈ N. (4.4)

Proof. For t = 1 or t = 2, by definition f1 = f2 = 0 which certainly satisfy (4.4).
It suffices to prove the case of t ≥ 2 by induction. Recalling equality (2.2), we have

‖ft+1‖2K = ‖ft‖2K −
2γt
t−1

t−1∑
j=1

(ft(xt, xj)− yt + yj)ft(xt, xj)

+
γ2t

(t−1)2

t−1∑
j,j′=1

(ft(xt, xj)− yt + yj)(ft(xt, xj′)− yt + yj′)K((xt, xj), (xt, xj′))

≤ ‖ft‖2K +
γ2t κ

2

t−1

t−1∑
j

(ft(xt, xj)− yt + yj)
2

− 2γt
t−1

t−1∑
j=1

(ft(xt, xj)− yt + yj)ft(xt, xj).

12



Define a univariate function Fj by Fj(s) = κ2γt(s− yt + yj)
2− 2(s− yt + yj)s. It is

easy to see that sups∈R Fj(s) =
(yt−yj)2
2−κ2γt ≤ (2M)2 since γtκ

2 ≤ 1 and |yj|+|yt| ≤ 2M.
Therefore, from the above estimation we can get, for t ≥ 2, that

‖ft+1‖2K ≤ ‖ft‖2K + γt
t−1

t−1∑
j=1

sup
j
Fj(s) ≤ ‖ft‖2K + (2M)2γt.

Combining the above inequality with the induction assumption that ‖ft‖K ≤
2M
√∑t−1

j=2 γj implies the desired result. This completes the proof of the lem-

ma.

Denote the operator norm ‖ωtj(LK)LβK‖L(L2
ρ)

= sup‖f‖ρ≤1 ‖ωtj(LK)LβK(f)‖ρ. The
following technical lemma estimates the operator norm, which is simply implied in
the proof of Lemma 3 in [41].

Lemma 2. Let β > 0 and γ`κ
2 ≤ 1 for any integer ` ∈ [j, t]. Then there holds

‖ωtj(LK)LβK‖L(L2
ρ)
≤
((β
e

)β
+ κ2β

)
min

{
1,
( t∑
`=j

γ`

)−β}
.

The estimation of the sample error also relies on an important characterization
of HK by the fractional operator L

1/2
K (see Theorem 4 and Remark 3 in [12]).

Specifically, for any f ∈ HK there exists g ∈ L2
ρ(X 2) such that L

1/2
K g = f with

property ‖f‖K = ‖L1/2
K g‖K = ‖g‖ρ. With this characterization of HK , it is easy to

see, for any j < t and f ∈ HK , that

‖ωtj+1(LK)f‖ρ = ‖ωtj+1(LK)L
1/2
K g‖ρ ≤ ‖ωtj+1(LK)L

1/2
K ‖L(L2

ρ)
‖g‖ρ

= ‖ωtj+1(LK)L
1/2
K ‖L(L2

ρ)
‖f‖K .

(4.5)

We also need the following probabilistic inequalities in a Hilbert space. The
first one is the Bennett’s inequality for random variables in Hilbert spaces, which
can be easily derived from [28, Theorem B 4].

Lemma 3. Let {ξi : i = 1, 2, . . . , t} be independent random variables in a Hilbert
space H with norm ‖·‖. Suppose that almost surely ‖ξi‖ ≤ B and E‖ξi‖2 ≤ σ2 <∞.
Then, for any 0 < δ < 1, the following holds with probability at least 1− δ,

∥∥∥1

t

t∑
i=1

[ξi − Eξi]
∥∥∥ ≤ 2B log 2

δ

t
+ σ

√
log 2

δ

t

The second probabilistic inequality is the Pinelis-Bernstein inequality [34, Propo-
sition A.3] for martingale difference sequence in a Hilbert space, which is derived
from [24, Theorem 3.4].
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Lemma 4. Let {Sk : k ∈ N} be a martingale difference sequence in a Hilbert space.
Suppose that almost surely ‖Sk‖ ≤ B and

∑t
k=1 E[‖Sk‖2|S1, . . . , Sk−1] ≤ σ2

t . Then,
for any 0 < δ < 1, the following holds with probability at least 1− δ,

sup
1≤j≤t

∥∥∥∥∥
j∑

k=1

Sk

∥∥∥∥∥ ≤ 2

(
B

3
+ σt

)
log

2

δ
.

We also need some facts on Hilbert-Schmidt operators on HK , see [15, 29].
Specifically, let HS(HK) be the Hilbert space of Hilbert-Schmidt operators on HK

with inner product 〈A,B〉HS = Tr(BTA) for any A,B ∈ HS(HK). Here Tr denotes
the trace of a linear operator. Indeed, the space HS(HK) is a subspace of the space
of bounded linear operators on HK , which is usually denoted by (L(HK), ‖·‖L(HK))
with the property, for any A ∈ HS(HK), that

‖A‖L(HK) ≤ ‖A‖HS. (4.6)

With the above preparations, we are ready to estimate the sample error for al-
gorithm (2.2) which, according to the error decomposition (4.3), consists of terms
‖
∑t

j=2 γjω
t
j+1(LK)Âj‖ρ and ‖

∑t
j=2 γjω

t
j+1(LK)B̂j‖ρ. Let us start with the estima-

tion of ‖
∑t

j=2 γjω
t
j+1(LK)Âj‖ρ.

Theorem 4. Assume γtκ
2 ≤ 1 for any t ∈ N and let {ft : t ∈ N} be given by

equation (2.2). For any t ≥ 2 and 0 < δ < 1, with probability 1− δ there holds

‖
t∑

j=2

γjω
t
j+1(LK)Âj‖ρ ≤

[
12κ(1 + κ)2M log

4t

δ

] t∑
j=2

γj(1 + (
∑j−1

`=2 γ`)
1/2)

√
j
(
1 +

∑t
`=j+1 γ`

)1/2 .
Proof. Write

t∑
j=2

γjω
t
j+1(LK)Âj :=

t∑
j=2

γjω
t
j+1(LK)Âj1 +

t∑
j=2

γjω
t
j+1(LK)Âj2,

where Âj1 = (L̃j − LK)fj and Âj2 = −(S̃j − LK f̃ρ). Hence,

‖
t∑

j=2

γjω
t
j+1(LK)Âj‖ρ ≤ ‖

t∑
j=2

γjω
t
j+1(LK)Âj1‖ρ

+‖
t∑

j=2

γjω
t
j+1(LK)Âj2‖ρ.

(4.7)
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For the first term on the right-hand side of equation (4.7), we have

‖
t∑

j=3

γjω
t
j+1(LK)Âj1‖ρ =

t∑
j=3

γj‖ωtj+1(LK)Âj1‖ρ

≤
t∑

j=3

γj‖ωtj+1(LK)L
1/2
K ‖L(L2

ρ)
‖Âj1‖K

≤
t∑

j=3

γj‖ωtj+1(LK)L
1/2
K ‖L(L2

ρ)
‖L̃j − LK‖L(HK)‖fj‖K

≤
t∑

j=3

γj‖ωtj+1(LK)L
1/2
K ‖L(L2

ρ)
‖L̃j − LK‖HS‖fj‖K ,

(4.8)

where the second inequality used (4.5) and the last inequality used (4.6).

Let the vector-valued random variable ξ(x) =
∫
X 〈·, K(x′,x)〉KK(x′,x)dρX (x′). By

following the proof of Lemma 2 in [15], we have that ‖〈·, K(x′,x)〉KK(x′,x)‖HS ≤ κ2.
Hence, ‖ξ‖HS ≤

∫
X ‖〈·, K(x′,x)〉KK(x′,x)‖HSdρX (x′) ≤ κ2. Applying Lemma 3 with

B = σ = κ2 and H = HS(HK), we have, with probability 1− δ
t
, that

‖L̃j − LK‖HS =
∥∥ 1
j−1

j−1∑
`=1

ξ(x`)− E(ξ)
∥∥
HS

≤ 2κ2 log 2t
δ

j−1 + κ2
√

log 2t
δ

j−1 ≤
3
√
2κ2 log 2t

δ√
j

.

(4.9)

Applying Lemma 2 with β = 1/2 implies, for any 2 ≤ j ≤ t, that

‖ωtj+1(LK)L
1/2
K ‖L(L2

ρ)
≤
((

1
2e

)1/2
+ κ
)

min
{

1,
( t∑
`=j+1

γ`

)−1/2}
≤
√

2
(
1 + κ

)
/
(
1 +

∑t
`=j+1 γ`

)1/2
,

(4.10)

where we used the conventional notation
∑t

`=t+1 γ` = 0. Putting estimations (4.9),
(4.10) and inequality (4.4) in Lemma 1 back into (4.8), with probability 1−δ there
holds

‖
t∑

j=3

γjω
t
j+1(LK)Âj1‖ρ ≤

[
12κ2(1 + κ)M log

2t

δ

] t∑
j=3

γj(
∑j−1

`=2 γ`)
1/2

√
j
(
1 +

∑t
`=j+1 γ`

)1/2 . (4.11)

For the term ‖
t∑

j=2

γjω
t
j+1(LK)Âj2‖ρ, we observe from (4.5) again that

‖
t∑

j=2

γjω
t
j+1(LK)Âj2‖ρ ≤

t∑
j=2

γj‖ωtj+1(LK)L
1/2
K ‖L(L2

ρ)
‖Âj2‖K

≤
t∑

j=2

γj‖ωtj+1(LK)L
1/2
K ‖L(L2

ρ)
‖S̃j − LK f̃ρ‖K .

(4.12)
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Let the vector-valued random variable ξ(z) =
∫
X (fρ(x

′) − y)K(x′,x)dρX (x′) ∈ HK .
Observe that ‖ξ‖K ≤

∫
X |fρ(x

′)− y|‖K(x′,x)‖KdρX (x′) ≤ 2κM. Applying Lemma 3
with B = σ = 2κM and H = HK , we have, with probability 1− δ

t
, that

‖S̃j − LK f̃ρ‖K = ‖ 1
j−1

j−1∑
`=1

ξ(z`)− E(ξ)‖K

≤ 4κM log 2t
δ

j−1 + 2κM
√

log 2t
δ

j−1

≤ 6
√
2κM log 2t

δ√
j

.

Putting the above estimation and inequality (4.10) into (4.12) implies, with prob-
ability 1− δ, that

‖
t∑

j=2

γjω
t
j+1(LK)Âj2‖ρ ≤

[
12κ(1 + κ)M log

2t

δ

] t∑
j=2

γj
√
j
(
1 +

∑t
`=j+1 γ`

)1/2 . (4.13)

Combining inequalities (4.11) and (4.13), we have, with probability 1− δ, that

‖
t∑

j=2

γjω
t
j+1(LK)Âj‖ρ ≤

[
12κ(1 + κ)2M log

4t

δ

] t∑
j=2

γj(1 + (
∑j−1

`=2 γ`)
1/2)

√
j
(
1 +

∑t
`=j+1 γ`

)1/2 .
This completes the proof of the theorem.

We move on to the estimation of the term ‖
∑t

j=2 γjω
t
j+1(LK)B̂j‖ρ.

Theorem 5. Assume γtκ
2 ≤ 1 for any t ∈ N and let {ft : t ∈ N} be given by

equation (2.2). For any t ≥ 2 and 0 < δ < 1, with probability 1− δ there holds

‖
t∑

j=2

γjω
t
j+1(LK)B̂j‖ρ ≤

64

3

(
κ(1 + κ)2M log

2

δ

)( t∑
j=2

γ2j (1 +
∑j−1

`=2 γ`)

1 +
∑t

`=j+1 γ`

) 1
2
.

Proof. Notice, from the recursive equality (2.2), that fj only depends on samples
{z1, . . . , zj−1} and f1 = f2 = 0. Therefore, for any j ≥ 2, there holds

E(B̂j|z1, . . . , zj−1) = 0, (4.14)

which means that {ξj := γjω
t
j+1(LK)B̂j : j = 2, . . . , t} is a martingale difference se-

quence. In the following, we will apply Lemma 4 to estimate ‖
∑t

j=2 γjω
t
j+1(LK)B̂j‖ρ.

To this end, it remains to estimate B and σ2
t .

Recall that B̂j = (L̂j − L̃j)fj − (Ŝj − S̃j). By (4.6) and Lemma 1, we have

‖B̂j‖K ≤ ‖L̂j − L̃j‖L(HK)‖fj‖K + ‖Ŝj − S̃j‖K
≤ ‖L̂j − L̃j‖HS‖fj‖K + ‖Ŝj − S̃j‖K

≤ 2κ2‖fj‖K + 2κM ≤ 4κ2M
( j−1∑
`=2

γ`
) 1

2 + 2κM.
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Consequently,

‖ωtj+1(LK)B̂j‖ρ ≤ ‖ωtj+1(LK)L
1/2
K ‖L(L2

ρ)
‖B̂j1‖K

≤
√
2(1+κ)(

1+

t∑
`=j+1

γ`
)1/2 (4κ2M(∑j−1

`=2 γ`
) 1

2 + 2κM
)

≤ 8κ(1 + κ)2M
(

1+
∑j−1
`=2 γ`

1+
∑t
`=j+1 γ`

) 1
2
.

(4.15)

where the second inequality used Lemma (4.10). From the above estimation, we
have

t∑
j=2

γ2jE(‖ωtj+1(LK)B̂j‖2ρ|z1, . . . , zj−1)

≤ σ2
t := 64κ2(1 + κ)4M2

t∑
j=2

γ2j (1 +
∑j−1

`=2 γ`)

1 +
∑t

`=j+1 γ`
,

and

B = sup2≤j≤t γj‖ωtj+1(LK)B̂j‖ρ ≤ 8κ(1 + κ)2M
(

sup2≤j≤t
γ2j (1+

∑j−1
`=2 γ`)

1+
∑t
`=j+1 γ`

) 1
2

≤ 8κ(1 + κ)2M
( t∑
j=2

γ2j (1 +
∑j−1

`=2 γ`)

1 +
∑t

`=j+1 γ`

) 1
2
.

Applying Lemma 4 yields that, with probability 1− δ,

‖
t∑

j=2

γjω
t
j+1(LK)B̂j‖ρ ≤

64

3

(
κ(1 + κ)2M log

2

δ

)( t∑
j=2

γ2j (1 +
∑j−1

`=2 γ`)

1 +
∑t

`=j+1 γ`

) 1
2
.

This completes the proof of the theorem.

4.2 Estimates of the approximation error

Here, we establish some basic estimates for the deterministic approximation error
involving ‖ωt2(LK)f̃ρ‖ρ. To this end, we recall the notion of K-functional [6] in
approximation theory, namely

K(s, fρ) := inf
f∈HK

{‖f − fρ‖ρ + s‖f‖K}, s > 0. (4.16)

We can estimate the quantity ‖ωt2(LK)f̃ρ‖ρ as follows.

Lemma 5. Assume γtκ
2 ≤ 1 for each t ∈ N. Then the following statements hold

true.
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(a) Let the K-functional defined by (2.5). Then, we have

‖ωt2(LK)f̃ρ‖ρ ≤ K
(√

2(1 + κ)
( t∑
j=2

γj
)− 1

2 , f̃ρ
)
. (4.17)

(b) If f̃ρ ∈ LβK(L2
ρX

) with some β > 0 then

‖ωt2(LK)f̃ρ‖ρ ≤ 2

((β
e

)β
+ κ2β

)
‖L−βK f̃ρ‖ρ

( t∑
j=2

γj
)−β

. (4.18)

Proof. Part (a) is proved as follows. For any f ∈ HK , from (4.5) we have

‖ωt2(LK)f̃ρ‖ρ ≤ ‖f − f̃ρ‖ρ + ‖ωt2(LK)f‖ρ.
= ‖f − f̃ρ‖ρ + ‖ωt2(LK)L

1
2
K‖L(L2

ρ)
‖f‖K .

(4.19)

Applying Lemma 2 with β = 1
2
, j = 2, implies that ‖ωt2(LK)L

1
2
K‖L(L2

ρ)
≤
√

2(1 +

κ)
( t∑
j=2

γj
)− 1

2 . Then, substituting this into the right-hand side of (4.19) yields that

‖ωt2(LK)f̃ρ‖ρ ≤ inf
f∈HK

{
‖f − f̃ρ‖ρ +

√
2(1 + κ)

( t∑
j=2

γj
)− 1

2‖f‖K
}
. (4.20)

Part (b) can be directly proved by applying Lemma 2 and the following obser-
vation

‖ωt2(LK)f̃ρ‖ρ ≤ ‖ωt2(LK)LβK‖L(L2
ρ)
‖L−βK f̃ρ‖ρ.

5 Proof of Main Results

In this section, we prove the results presented in Section 2. Let us start with the
proofs for Theorems 1 and 2. To this end, we need some technical lemmas.

Lemma 6. Let γj = j−θ

µ
for any j ∈ N with θ ∈ (1

2
, 1) and µ > 0. Then we have,

for any t ≥ 4, that

t∑
j=2

γj(1 +
∑j−1

`=2 γ`)√
j
(
1 +

∑t
`=j+1 γ`

)1/2 ≤ Cθt
−min(θ− 1

2
, 1−θ

2
) log t, (5.1)

where

Cθ =


26max

(√
µ(1−θ))−1,

√
µ(1−θ)

)
µ(1−θ)|3θ−2| +

√
5
2µ
, if θ 6= 2/3

20max
(√

µ(1−θ))−1,
√
µ(1−θ)

)
µ(1−θ) +

√
5
2µ
, if θ = 2/3.
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Lemma 7. Let γj = j−θ

µ
for any j ∈ N with θ ∈ (0, 1). Then we have, for any

t ≥ 4, that ( t∑
j=2

γ2j (1 + (
∑j−1

`=2 γ`)
2)

1 +
∑t

`=j+1 γ`

)1/2
≤ C̃θt

−min(θ− 1
2
, 1−θ

2
) log t, (5.2)

where C̃θ =


(

5
8µ

+ 16max((µ(1−θ))−1,µ(1−θ))
µ2(1−θ)|3θ−2|

)1/2
, if θ 6= 2/3(

5
8µ

+ 16max((µ(1−θ))−1,µ(1−θ))
µ2(1−θ)

)1/2
, if θ = 2/3.

The proofs for Lemma 6 and Lemma 7 are given in the Appendix. With the
above lemmas, we are ready to establish the main results stated in Section 2.

Proof of Theorem 1. Applying (4.3) with t = T , we have

‖fT+1 − f̃ρ‖ρ ≤ ‖ωT2 (LK)(f̃ρ)‖ρ + ‖
∑T

j=2 γjω
T
j+1(LK)Âj‖ρ

+‖
∑T

j=2 γjω
T
j+1(LK)B̂j‖ρ.

(5.3)

By Theorem 4 and (5.1), with probability 1− δ, there holds

‖
∑T

j=2 γjω
T
j+1(LK)Âj‖ρ ≤ 12κ(1 + κ)2M log 4T

δ

T∑
j=2

γj(1 +
∑j−1

`=2 γ`)√
j
(
1 +

∑t
`=j+1 γ`

)1/2
≤ 12Cθ κ(1 + κ)2M T−min(θ− 1

2
, 1−θ

2
) log T log 4T

δ

(5.4)
From Theorem 5 and (5.2) we have, with probability 1− δ, that

‖
∑T

j=2 γjω
T
j+1(LK)B̂j‖ρ ≤ 64

3
κ(1 + κ)2M

(∑T
j=2

γ2j (1+(
∑j−1
`=2 γ`)

2)

1+
∑T
`=j+1 γ`

)1/2
≤ 64C̃θ

3
κ(1 + κ)2M T−min(θ− 1

2
, 1−θ

2
) log T log 2

δ
.

(5.5)

Putting estimates (5.3), (5.4), and (5.5), with probability 1− 2δ there holds

‖fT+1 − f̃ρ‖ρ ≤ ‖ωT2 (LK)(f̃ρ)‖ρ + Cθ,κ T
−min(θ− 1

2
, 1−θ

2
) log T log

4T

δ
, (5.6)

where Cθ,κ = 4(3Cθ + 16C̃θ
3

)κ(1 + κ)2M.

In addition, by (4.17), we have

‖ωT2 (LK)(f̃ρ)‖ρ ≤ K
(√

2(1 + κ)
( T∑
j=2

γj
)− 1

2 , f̃ρ
)
.

Notice that
∑T

j=2 γj = 1
µ

∑T
j=2 j

−θ ≥ (T+1)1−θ−21−θ
µ(1−θ) ≥ (1−( 2

3
)1−θ)(T+1)1−θ

µ(1−θ) ≥ T 1−θ

3µ(1−θ) ≥
T 1−θ

3µ
. Consequently,

‖ωT2 (LK)(f̃ρ)‖ρ ≤ K
(√

6µ(1 + κ)T−
1−θ
2 , f̃ρ

)
. (5.7)
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Putting this back into (5.6) implies the desired result. This completes the proof of
the theorem. �

Proof of Corollary 1. By the definition of the almost surely convergence, it
suffices to prove, for any ε > 0, that

lim
t0→∞

P
(
sup
t≥t0

[‖ft+1 − f̃ρ‖ρ − inf
f∈HK

‖f − f̃ρ‖ρ] ≥ 2ε
)

= 0.

However, it is well-known that lims→+0K(s, f̃ρ) = inff∈HK ‖f − f̃ρ‖ρ (see e.g. Lem-
ma 9 in [41]). This means that there exists t1 ∈ N such that, for any t ≥ t1, there
holds

K
(√

6κ(1 + κ)t−
1−θ
2 , f̃ρ

)
− inf

f∈HK
‖f − f̃ρ‖ρ ≤ ε.

Let Rt = ‖ft+1− f̃ρ‖ρ−K
(√

6κ(1 +κ)t−
1−θ
2 , f̃ρ

)
. The above estimation implies, for

any t0 ≥ t1, that

P
(
sup
t≥t0

[‖ft+1 − f̃ρ‖ρ − inf
f∈HK

‖f − f̃ρ‖ρ] ≥ 2ε
)

≤ P
(
sup
t≥t0
Rt ≥ ε

)
≤

∞∑
t=t0

P
(
Rt ≥ ε

)
.

(5.8)

From Theorem 1, we have, for any 1− δ, that

P
(
Rt ≥ Cθ,κ t

−min(θ− 1
2
, 1−θ

2
) log t log(4t/δ)

)
≤ δ.

which is equivalent to

P
(
Rt ≥ ε

)
≤ 4t exp

(
−t

min(θ− 1
2
, 1−θ

2
)ε

Cθ,κ log t

)
.

Putting this back into (5.8) implies that

P
(
sup
t≥t0

[‖ft+1 − f̃ρ‖ρ − inf
f∈HK

‖f − f̃ρ‖ρ] ≥ 2ε
)
≤

∞∑
t=t0

4t exp
(
−t

min(θ− 1
2
, 1−θ

2
)ε

Cθ,κ log t

)
. (5.9)

For any 1/2 < θ < 1 and ε > 0, it is easy to see that

∞∑
t=2

4t exp
(
−t

min(θ− 1
2
, 1−θ

2
)ε

Cθ,κ log t

)
<∞.

Consequently,

lim
t0→∞

∞∑
t=t0

4t exp
(
−t

min(θ− 1
2
, 1−θ

2
)ε

Cθ,κ log t

)
= 0.

Combining this with (5.9) implies, for any ε > 0, that

lim
t0→∞

P
(
sup
t≥t0

[‖ft+1 − f̃ρ‖ρ − inf
f∈HK

‖f − f̃ρ‖ρ] ≥ 2ε
)

= 0.
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This completes the proof of the corollary. �

From Theorem 1 and the estimation (4.18) for the approximation error, we can
derive the explicit error rates for OPERA stated in Theorem 2.

Proof of Theorem 2. Applying (4.18) with β > 0 and (6.1) with γ` = 1
µ
`−θ,

j = 2 and k = T , we have that

‖ωT2 (LK)LβK‖L(L2
ρ)
≤
((

β
e

)β
+ κ2β

)(∑T
`=2 γ`

)−β
≤
((

β
e

)β
+ κ2β

)(∑T
`=2

1
µ
`−θ
)−β

≤
((

β
e

)β
+ κ2β

)
κ2βµβ

(∑T
`=2 `

−θ
)−β

≤
((

β
e

)β
+ κ2β

)
κ2β(µ(1− β))β

(
T 1−θ − 1

)−β
≤
[((

β
e

)β
+ κ2β

)
κ2β(µ(1− β))β(1− (1

2
)1−θ)−β

]
T−β(1−θ) := Dκ,βT

−β(1−θ)

Putting this estimation into Theorem 1 yields, with probability 1− δ, that

‖fT+1 − f̃ρ‖ρ ≤ Dκ,βT
−β(1−θ) + Cθ,κT

−min{θ− 1
2
, 1−θ

2
} log T log(8T/δ)). (5.10)

Selecting θ = min
{

2β+1
2β+2

, 2
3

}
implies, for probability 1− δ, that

‖fT+1 − f̃ρ‖ρ ≤ (Dκ,β + Cθ,κ)T
−min

(
β

2β+2
, 1
6

)
log T log(8T/δ).

This completes the proof of the theorem. �

We now turn our attention to the special pairwise kernel (2.8) induced by a
univariate kernel G. Let us first prove Proposition 1 which describes the relation-
ship between the space HK with the pairwise kernel K and HG with the univariate
kernel G.

Proof of Proposition 1. To prove (a), for any n ∈ N, {αi : i = 1, . . . , n} and
{(x1i , x2i ) ∈ X ×X : i = 1, . . . , n}, let g =

∑n
i=1 αi(Gx1i

−Gx2i
) ∈ HG. Indeed, it can

be further be verified that g ∈ I⊥G since 〈g, 1X 〉G = 〈
∑n

i=1 αi(Gx1i
− Gx2i

), 1X 〉G =∑n
i=1 αi(1X (x1i )− 1X (x2i )) = 0. Then, for any x1, x2 ∈ X ,∑n
i=1 αiK(x1i ,x

2
i )

(x1, x2) =
∑n

i=1 αi(Gx1i
(x1)−Gx2i

(x1))−
∑n

i=1 αi(Gx1i
(x2)−Gx2i

(x2))

:= g(x1)− g(x2),

From the observation that K((x1, x2), (x̂1, x̂2)) = 〈Gx1 −Gx2 , Gx̂1 −Gx̂2〉G, we also
see that

‖=(g)‖K = ‖
n∑
i=1

αiK(x1i ,x
2
i )
‖K = ‖

n∑
i=1

αi(Gx1i
−Gx2i

)‖G = ‖g‖G.

According to [2], the RKHS HK is the completion of the above linear span of kernel
sections {K(x1i ,x

2
i )

: x1i , x
2
i ∈ X , i = 1, . . . , n} and likewise, HG is the completion of

the linear span of kernel sections {{Gxi1
, Gx2i
} : x1i , x

2
i ∈ X , i = 1, . . . , n} which
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implies that, for any f ∈ HK , there exists g ∈ IG such that f(x1, x2) = g(x1) −
g(x2), and ‖f‖K = ‖g‖G. It remains to prove that =(g) = 0 then g ∈ IG. Indeed,
=(g)(x1, x2) = 0 implies that g(x1) = g(x2) for any x1, x2 ∈ X . This means that
g is a constant function which means g ∈ IG. This completes part (a) of the
proposition.

Part (b) follows from part (a) since, in this case, IG = {0} which implies
HG = I⊥G . This completes the proof of the proposition. �

Secondly, for the special pairwise kernel given by (2.8), we can establish the
convergence of online pairwise learning algorithm (2.9) as stated in Theorem 3.

Proof of Theorem 3: Part (a) directly follows from Theorem 1, Proposition 1
and the definition of KG given by (2.11).

For part (b), under the assumption 1X 6∈ HG, from Proposition 1 we have

KG(s, f̃ρ) ≤ 2 infg∈HG{‖g − fρ‖ρ + s
2
‖g‖G}

≤ 2
√

2
(

infg∈HG{‖g − fρ‖2ρ + s2

4
‖g‖2G}

)1/2
.

(5.11)

According to [12, 15], infg∈HG{‖g−fρ‖2ρ+λ‖g‖2G} ≤ λ2β‖L−βG fρ‖ρ for any β ≤ 1/2.

Now applying this estimation and (5.11) with λ = s2

4
and s =

∑t
j=2 γj implies that

KG(
√

6κ(1 + κ)T−
1−θ
2 , f̃ρ) ≤ O(T−(1−θ)β).

Putting this into (2.6) and choosing γt = 1
κ2
t−

2β+1
2β+2 yields the desired result. This

completes the proof of the theorem. �

6 Conclusion

This paper studied an online learning algorithm for pairwise learning in an uncon-
strained RKHS setting called OPERA. OPERA has a non-strongly convex objective
function and is performed in an unconstrained setting, for which we are not aware
of similar studies for such online pairwise learning algorithms. We established its
almost-surely convergence and derived explicit error rates for polynomially decay-
ing step sizes. Below we discuss some possible directions for future work.

Firstly, the rates of OPERA under the regularity assumption f̃ρ ∈ LβK(L2
ρ) are

of the form E[‖fT+1 − f̃ρ‖ρ] ≤ O(T−
β

2β+2 ), which is suboptimal compared with the

rate O(T−
β

2β+1 ) in the univariate case [41]. It would be very interesting to improve
the rates of OPERA.

Secondly, OPERA is not a fully online learning algorithm since it needs to save
previous samples zt = {(xi, yi) : i = 1, . . . , t} at iteration t, although, in the linear
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case, efficient implementation may be possible. Hence, to improve the practical
implementation of OPERA, the other direction would be to introduce a memory-
efficient implementation which uses a finite buffer of capacity as in [18, 37]. In
this case, OPERA would work with finite buffers associated with the local loss
Lt(f) = 1

|Bt|
∑

(x,y)∈Bt(f(xt, x) − yt + y)2 at each iteration, where Bt is the state
of the buffer at iteration t. We expect that the resultant convergence rate of this
modified OPERA would be related to the capacity of the buffer set and the total
number of training samples.

Finally, note that the techniques developed in this paper heavily depend on the
error decomposition (i.e. equations (4.2) and (4.3)). It seems that they can not
be directly applied to handle other popular loss functions such as the hinge loss
and the logistic loss. We recently have developed completely different techniques
in [43]. This enables us to prove the convergence of the last iterate of an online
pairwise learning algorithm similar to OPERA with the least square being replaced
by a smooth loss function (e.g. the logistic loss).
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Appendix

Here we present the proofs for Lemmas 6 and Lemma 7. To this end, we first state
a technical lemma which will be used later.
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Lemma 8. Let γj = j−θ

µ
for any j ∈ N with θ ∈ (0, 1). Then, for any 1 ≤ j ≤ k,

there holds

1

µ(1− θ)
((k + 1)1−θ − j1−θ) ≤

k∑
`=j

γ` ≤
1

µ(1− θ)
(k1−θ − (j − 1)1−θ). (6.1)

Proof. Notice that `−θ ≤ s−θ for s ∈ [` − 1, `] and `−θ ≥ s−θ for s ∈ [`, ` + 1].

Hence, 1
µ

∑k
`=j

∫ `+1

`

s−θds ≤
k∑
`=j

γ` ≤
1

µ

k∑
`=j

∫ `

`−1
s−θds which implies that

1

µ

∫ k+1

j

s−θds ≤
k∑
`=j

γ` ≤
1

µ

∫ k

j−1
s−θds.

The desired result follows directly from the above inequality. �

We are ready to establish the proof of Lemma 6.

Proof of Lemma 6. Let J :=
∑t

j=2

γj(1+(
∑j−1
`=2 γ`)

1/2)

√
j
(
1+

∑t
`=j+1 γ`

)1/2 . It can be written as

J =
[γt(1+(

∑t−1
`=2 γ`)

1/2)√
t

]
+
[

γ2
√
2
(
1+

∑t
`=3 γ`

)1/2 ]+
[∑t−1

j=3

γj(1+(
∑j−1
`=2 γ`)

1/2)

√
j
(
1+(

∑t
`=j+1 γ`)

1/2
)1/2 ]

:= J1 + J2 + J3.
(6.2)

We estimate J1,J2, and J3 separately as follows.

Firstly, let us look at the term J1. Indeed, by (6.1) we have

J1 = 1
µ
t−θ−1/2

(
1 + 1√

µ
(
∑t−1

`=1 `
−θ)1/2

)
≤ 1

µ
t−θ−1/2

(
1 + t

1−θ
2√

µ(1−θ)

)
≤ 2 max(1, (

√
µ(1− θ))−1)t− 3θ

2 .
(6.3)

Secondly, for the term J2, we apply (6.1) again to get that

J2 ≤ 2−θ−1/2

µ

√
µ(1−θ)(

(t+1)1−θ−31−θ
)1/2 ≤ ( (1−θ)

(1−(3/5)1−θ)µ

)1/2
t−(1−θ)/2 ≤

(
5
2µ

)1/2
t−(1−θ)/2,

(6.4)
where the second to last inequality used the assumption t ≥ 4 which implies 31−θ ≤
(3
5
(t + 1))1−θ,, and the last inequality used the property that, for any 0 < θ < 1

and 0 < x < 1, that (1− x)1−θ ≥ (1− θ)(1− x).

Lastly, we estimate the term J3. To this end, by (6.1) we can estimate J3 as
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follows:

J3 ≤ 1
µ

∑t−1
j=3

j−θ
(
1+ 1√

µ(1−θ)
((j−1)1−θ−1)1/2

)
√
j
(
1+ 1

µ(1−θ) ((t+1)1−θ−(j+1)1−θ)
)1/2

≤ 2
µ

max(1, (
√
µ(1− θ))−1)

∑t−1
j=3

j−
3θ
2(

1+ 1
µ(1−θ) ((t+1)1−θ−(j+1)1−θ)

)1/2
≤ 2

µ
max(

√
µ(1− θ))−1,

√
µ(1− θ))

∑t−1
j=3

j−
3θ
2(

1+((t+1)1−θ−(j+1)1−θ)
)1/2 .

(6.5)

It remains to estimate
∑t−1

j=3
j−

3θ
2(

1+((t+1)1−θ−(j+1)1−θ)
)1/2 . To this end, we further de-

compose it into two terms as∑t−1
j=3

j−
3θ
2

(1+((t+1)1−θ−(j+1)1−θ))1/2
= (
∑t−1

j>t/2 +
∑

3≤j≤t/2)
j−

3θ
2

(1+((t+1)1−θ−(j+1)1−θ))1/2

:= J̃31 + J̃32.
(6.6)

For J̃31, for any s ∈ [j, j + 1], that j−θ ≤ 2θ(1 + s)−θ and (t+ 1)1−θ − (j + 1)1−θ ≥
(t+ 1)1−θ − (s+ 1)1−θ. Then,

J̃31 ≤ 2
θ
2 t−

θ
2

∑t−1
j>t/2

j−θ

(1+((t+1)1−θ−(j+1)1−θ))1/2

≤ 23θ/2t−
θ
2

∑t−1
j>t/2

∫ j+1

j

(1 + s)−θds

(1 + (t+ 1)1−θ − (s+ 1)1−θ)1/2

≤ 23θ/2t−
θ
2

∫ t

t/2

(1 + s)−θds

(1 + (t+ 1)1−θ − (s+ 1)1−θ)1/2

≤ 21+3θ/2

1−θ t−
θ
2

[
(1 + (t+ 1)1−θ)− (t/2 + 1)1−θ

]1/2
≤ 21+3θ/2

1−θ t−
θ
2 (t+ 1)

1−θ
2 ≤ 4

√
2

1−θ t
1
2
−θ

(6.7)

For J̃32, the fact that (t + 1)1−θ − (j + 1)1−θ ≥ (1 − (2/3)1−θ)(t + 1)1−θ for any
j ≤ t/2 implies that

J̃32 ≤
1

t
1−θ
2 (1− (2/3)1−θ)

∑
3≤j<t/2

j−3θ/2 ≤ 3

1− θ
t−(1−θ)/2

∑
3≤j<t/2

j−3θ/2. (6.8)

Notice that∑
3≤j<t/2

j
−3θ
2 ≤

∫ t/2

2

s−3θ/2ds ≤

{
2

|2−3θ|t
−min(0, 3θ−2

2
), if θ 6= 2/3

ln t, if θ = 2/3

Putting the above inequality into (6.8) yields that

J̃32 ≤ Aθt
−min(θ− 1

2
, 1−θ

2
) ln t, (6.9)

where Aθ = 6
(1−θ)|3θ−2| if θ 6= 2/3 and 3

1−θ otherwise. Combining (6.7) and (6.9),

(6.5), and (6.6) together implies that

J3 ≤ Bθt
−min(θ− 1

2
, 1−θ

2
) ln t, (6.10)
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where

Bθ =


4max(

√
µ(1−θ))−1,

√
µ(1−θ))

µ(1−θ) (2
√

2 + 3
|3θ−2|), if θ 6= 2/3

2(3+4
√
2)max(

√
µ(1−θ))−1,

√
µ(1−θ))

µ(1−θ) , if θ = 2/3.

Now putting estimates (6.3), (6.4), and (6.10) together yields the desired result.
This completes the proof of the lemma. �

We now turn our attention to the proof for Lemma 7.

Proof of Lemma 7. Let I =
∑t

j=2

γ2j (1+
∑j−1
`=2 γ`)

1+
∑t
`=j+1 γ`

. We can write I as

I =
[
γ2t (1 +

∑t−1
`=2 γ`)

]
+
[ γ22
(1+

∑t−1
`=3 γ`)

]
+
[∑t−1

j=3

γ2j (1+
∑j−1
`=2 γ`)

1+
∑t
`=j+1 γ`

]
:= I1 + I2 + I3,

(6.11)

where we used the conventional notation
∑j

`=j+1 γ` = 0 for any j ∈ N. We estimate
I1, I2, and I3 term by term as follows.

Firstly, let us first estimate I1. By (6.1), we can have that

I1 ≤ 1
µ2
t−2θ(1 + 1

µ(1−θ)((t− 1)1−θ − 1))

≤ 2max(1,(µ(1−θ))−1)
µ2

t1−3θ.
(6.12)

Secondly, we move on to the estimation of term I2. By (6.1), we obtain that

I2 ≤ 1
4µ2

1
1+ 1

µ(1−θ) ((t+1)1−θ−31−θ)

≤ 1−θ
4µ
(
1−( 3

5
)1−θ
)t−(1−θ) ≤ 5

8µ
t−(1−θ) (6.13)

where, in the second to last inequality, we used the assumption t ≥ 4 which implies
31−θ ≤ (3

5
(t + 1))1−θ, and the last inequality used the fact, for any 0 < θ < 1 and

0 < x < 1, that (1− x)1−θ ≥ (1− θ)(1− x).

Finally, we turn our attention to the estimation of I3. Applying (6.1) again to
I3 implies that

I3 ≤ 1
µ2

∑t−1
j=3

j−2θ
(
1+ 1

µ(1−θ) ((j−1)
1−θ−1)

)
1+ 1

µ(1−θ)

(
(t+1)1−θ−(j+1)1−θ

)
≤ 2

µ2

∑t−1
j=3

j−2θmax
(
1, 1
µ(1−θ)

)
j1−θ

1+ 1
µ(1−θ)

(
(t+1)1−θ−(j+1)1−θ

)
≤ 2max(1,(µ(1−θ)−1))max(1,µ(1−θ))

µ2

∑t−1
j=3

j1−3θ

1+
(
(t+1)1−θ−(j+1)1−θ

)
≤ 2max(µ(1−θ),(µ(1−θ)−1))

µ2

∑t−1
j=3

j1−3θ

1+
(
(t+1)1−θ−(j+1)1−θ

) .
(6.14)

It now suffices to estimate the term I3 :=
∑t−1

j=3
j1−3θ

1+
(
(t+1)1−θ−(j+1)1−θ

) , which can be

written as
I3 =

(∑t
j>t/2 +

∑
3≤j≤t/2

)
j1−3θ

1+
(
(t+1)1−θ−(j+1)1−θ

)
:= Ĩ31 + Ĩ32.

(6.15)
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For the first term Ĩ31, observe, for any s ∈ [j, j + 1], that j−θ ≤ 2θ(1 + s)−θ and
(t+ 1)1−θ − (j + 1)1−θ ≥ (t+ 1)1−θ − (s+ 1)1−θ. Therefore,

Ĩ31 :=
∑t−1

j>t/2
j1−3θ

1+
(
(t+1)1−θ−(j+1)1−θ

)
≤ 22θ−1t1−2θ

∑t−1
j>t/2

∫ j+1

j

(s+ 1)−θ

1 +
(
(t+ 1)1−θ − (s+ 1)1−θ

)ds
≤ 22θ−1t1−2θ

∫ t

t/2

(s+ 1)−θ

1 +
(
(t+ 1)1−θ − (s+ 1)1−θ

)ds
= 22θ−1t1−2θ

1−θ

[
ln(1 +

(
(t+ 1)1−θ − (t/2)1−θ

)
)− ln(1 +

(
(t+ 1)1−θ − t1−θ

)
)
]

≤ 22θ−1t1−2θ

1−θ ln(t+ 1)1−θ ≤ 22θ−1t1−2θ ln(t+ 1) ≤ 4t1−2θ ln t.
(6.16)

For Ĩ32, we have

Ĩ32 =
∑

3≤j≤t/2

j1−3θ

1 +
(
(t+ 1)1−θ − (j + 1)1−θ

)
≤

∑
3≤j≤t/2

j1−3θ

1 + (1− (2/3)1−θ)(t+ 1)1−θ

≤ t−(1−θ)

(1−(2/3)1−θ)

∑
3≤j≤t/2

j1−3θ ≤ 3t−(1−θ)

(1− θ)
∑

3≤j≤t/2

j1−3θ,

(6.17)

where we used again the fact, for any 0 < θ < 1 and 0 < x < 1, that (1− x)1−θ ≥
(1− θ)(1− x). Also, by a simple calculation, there holds

∑
3≤j≤t/2

j1−3θ ≤
{

1
|2−3θ|t

−min(0,3θ−2), if θ 6= 2/3

ln t, if θ = 2/3.

Putting the above estimation into (6.17) yields that

Ĩ32 ≤ Ãθ t
−min(2θ−1,1−θ) ln t. (6.18)

where Ãθ = 3
|3θ−2|(1−θ) if θ 6= 2/3 and 3

1−θ otherwise. Putting (6.16) and (6.18) back

into (6.14) implies that

Ĩ3 ≤ B̃θ t
−min(2θ−1,1−θ) ln t, (6.19)

where B̃θ = 3
(1−θ)|3θ−2| + 4 if θ 6= 2/3 and 3

1−θ + 4 otherwise. Combining estimates

(6.12), (6.13), and (6.19) together yields the desired result. This completes the
proof of the lemma. �
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