
Submitted to the Annals of Statistics
arXiv: arXiv:1503.02817

MINIMAX OPTIMAL RATES OF ESTIMATION IN HIGH
DIMENSIONAL ADDITIVE MODELS

By Ming Yuan∗,‡, and Ding-Xuan Zhou†,§

University of Wisconsin-Madison‡ and City University of Hong Kong§

We establish minimax optimal rates of convergence for estima-
tion in a high dimensional additive model assuming that it is approx-
imately sparse. Our results reveal a behavior universal to this class
of high dimensional problems. In the sparse regime when the com-
ponents are sufficiently smooth or the dimensionality is sufficiently
large, the optimal rates are identical to those for high dimensional
linear regression, and therefore there is no additional cost to entertain
a nonparametric model. Otherwise, in the so-called smooth regime,
the rates coincide with the optimal rates for estimating a univariate
function, and therefore they are immune to the “curse of dimension-
ality”.

1. Introduction. With the recent advances in science and technology,
high dimensional regression problems have become ubiquitous in a multitude
of areas – genomics, medical imaging, and finance are a few well known
examples. A considerable amount of research effort has been devoted to
the understanding of challenges brought about by the high dimensionality,
and development of statistical methodology to counter them. Most of the
existing work focuses on high dimensional linear regression where a number
of approaches such as the nonnegative garrote (Breiman, 1995), the Lasso
(Tibshirani, 1996), the SCAD (Fan and Li, 2001), and the Dantzig selector
(Candès and Tao, 2007), have been developed to exploit sparsity, or perform
variable selection; and much progress has also been made to understand to
what extent a high dimensional regression coefficient vector can be reliably
estimated; see, e.g., Koltchinskii (2011), Bühlmann and van de Geer (2013)
and references therein.

Linear models, however, could be too restrictive in many applications.
As a more flexible alternative, high dimensional additive models have at-
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tracted much attention in the past several years. See, e.g., Lin and Zhang
(2006), Yuan (2007), Koltchinskii and Yuan (2008), Ravikumar et al. (2009),
Meier, van de Geer and Bühlmann (2009), Huang, Horowitz and Wei (2010),
Koltchinskii and Yuan (2010), Fan, Feng and Song (2011), Raskutti, Wain-
wright and Yu (2012), and Cui et al. (2013) among others. Let {(Xi, Yi) :
i = 1, . . . , n} be independent copies of a random couple (X,Y ) following a
regression model:

(1.1) Y = f(X) + ε,

where the error ε follows aN (0, σ2) distribution. The additive model amounts
to the assumption that

(1.2) f(x1, . . . , xd) = f1(x1) + · · ·+ fd(xd),

where the component functions fjs are modeled non-parametrically; see,
e.g., Stone (1985) or Hastie and Tibshirani (1990). Here we assume that
they reside in certain reproducing kernel Hilbert spaces (RKHS); see, e.g.,
Aronszajn (1950) and Wahba (1990).

To fix ideas, assume that X follows a distribution Π supported on a
product space X d for some compact subset X of R, and that all component
functions come from a common RKHS of functions on X , denoted by (H1, ∥·
∥H1). It is clear that the additive model (1.2) can be identified with space

Hd := H1 ⊕ . . .⊕H1 =

{
g : X d → R|g(x1, . . . , xd) = g1(x1) + . . .+ gd(xd),

and g1, . . . , gd ∈ H1

}
.

Obviously linear models can be viewed as a trivial special case of (1.2) by
taking H1 to be the collection of all univariate linear functions defined over
X . Another canonical example of H1 is the mth (2m > k) order Sobolev
space Wm

2 ([0, 1]k) defined on a unit interval (X = [0, 1]k). See, e.g., Wahba
(1990) for further examples.

We note that for a general g ∈ Hd, the additive representation given by
(1.2) may not be unique. Define the (quasi-)norm ∥f∥ℓq(Hd) (q > 0) by

∥g∥ℓq(Hd) = inf

{∥∥∥(∥g1∥H1 , . . . , ∥gd∥H1)
⊤
∥∥∥
ℓq

: g1(x1) + . . .+ gd(xd) = g(x1, . . . , xd)

and g1, . . . , gd ∈ H1

}
.
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In other words, ∥f∥ℓq(Hd) is the ℓq norm of the vector of RKHS norms of
its component functions minimized over all of its additive representations.
In particular, when q = 2, ∥ · ∥ℓ2(Hd) can be viewed as a RKHS norm. More
specifically, let K : X × X → R be a Mercer kernel generating the RKHS
(H1, ∥ · ∥H1) and write

Kd((x1, . . . , xd)
⊤, (x′1, . . . , x

′
d)

⊤) = K(x1, x
′
1) + · · ·+K(xd, x

′
d).

It is not hard to see that Kd is the generating kernel of the RKHS (Hd, ∥ ·
∥ℓ2(Hd)). Another special case of the ℓq(Hd) norm defined above is the case
when q ↓ 0. ∥ · ∥ℓ0(Hd) can be interpreted as the smallest number of additive
components needed to express a function from Hd.

When the dimension d is large, it is of particular interest to consider the
case when f resides in an ℓq(Hd) ball for 0 < q < 1:

BR (ℓq(Hd)) =
{
g ∈ Hd : ∥g∥qℓq(Hd)

≤ R
}
.

Write

∥g∥L2(Π) =

(∫
X d

g2(x)dΠ(x)

)1/2

.

We are interested in the minimax optimal rate of convergence for estimating
f in terms of the squared ∥·∥L2(Π) norm. In particular, when the eigenvalues
of the K decays polynomially, i.e., its kth largest eigenvalue is of the order
k−2α, our results imply that the minimax optimal rate for estimating f ∈
BR(ℓq(Hd)) is given by

(1.3) R(n, d) =

(
log d

n

)1− q
2

+ n− 2α
2α+1 ,

up to a constant scaling factor. The optimal rate of convergence given by
(1.3) exhibits an interesting two-regime dichotomy as illustrated in Figure
1.

More specifically, when the component functions are not sufficiently smooth
in the sense that

α <
1

q
− 1

2
,

the second term on the right hand side of (1.3) is dominated by the first one
if d is ultra-large:

d > exp
[
n

2
2−q (

1
2α+1

− q
2)
]
,
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Fig 1: When the smoothness index α and dimensionality measured by
log log d/ log n falls in the smooth region in the figure above, the optimal

rate is given by n− 2α
2α+1 which is determined solely by the smoothness index.

On the other hand, if they fall into the sparse regime, then the optimal rate is
given by (n−1 log d)1−q/2 which is determined entirely by the dimensionality.

and hence the minimax optimal rate becomes

(1.4) R(n, d) ≍
(
log d

n

)1− q
2

,

where we write for two positive sequences an,d and bn,d, an,d ≍ bn,d if
an,d/bn,d is bounded away from both zero and infinity. The rate given by
(1.4) happens to be the minimax optimal optimal rate for estimating a d
dimensional linear regression when assuming the vector of regression coeffi-
cient comes from a ℓq ball in Rd; see, e.g., Ye and Zhang (2010) or Raskutti,
Wainwright and Yu (2011). On the other hand, when

d ≤ exp
[
n

2
2−q (

1
2α+1

− q
2)
]
,

the optimal rate is given by

R(n, d) ≍ n− 2α
2α+1 .
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This rate coincides with the optimal rate for estimating f if we know in
advance that it actually comes from a single component space H1, e.g.,
f2 = · · · = fd = 0, rather than the d-variate function space Hd; see, e.g.,
Stone (1980, 1982) and Tsybakov (2009). Similar phenomenon depending
on the dimensionality d has also been observed earlier for high dimensional
additive models under exact sparsity (q = 0). See, e.g., Koltchinskii and
Yuan (2010), Raskutti, Wainwright and Yu (2012) and Suzuki and Sugiyama
(2013). Our results suggest that such phenomenon is more universal and
applies in general to the approximate sparse case.

It is also worth pointing out that such a regime-switch in d vanishes when
the component functions are sufficiently smooth in that

α ≥ 1

q
− 1

2
,

a phenomenon absent in the case of exact sparsity (q = 0). In this situation,
the second term on the right hand side of (1.3) is always dominated by the
first one and therefore the optimal rate is always

R(n, d) ≍
(
log d

n

)1− q
2

.

In other words, we pay no extra price, in terms of rates of convergence, for
entertaining a generally nonparametric additive model (1.2) when compared
with the much more restrictive linear models, regardless of the value of d.

Although we focus on additive models, our general framework is also
closely related to multiple kernel learning or “aggregation” of kernel ma-
chines, a popular technique in machine learning to combine multiple kernels
instead of using a single one in order to achieve improved prediction perfor-
mance. These type of problems have been studied previously by Bousquet
et al. (2003), Cramer et al. (2003), Lanckriet et al. (2004), Micchelli and
Pontil (2005), Srebro and Ben-David (2006), Bach (2008), and Suzuki and
Sugiyama (2013) among others. It is expected that our results here could
lead to further understanding of these problems as well.

The rest of the paper is organized as follows. We first review some basic
concepts and properties of reproducing kernel Hilbert spaces in Section 2.
Section 3 presents the main results. All proofs are relegated to Section 4.

2. Reproducing Kernel Hilbert Spaces. We begin with a brief re-
view of some of the basic facts about RKHS, which we shall make repeated
use later on. Interested readers are referred to Aronszajn (1950) and Wahba
(1990) for further details. In particular, we shall focus on the jth component
space, e.g., the RKHS defined on the jth coordinate of X ∈ X d.
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2.1. Kernel and RKHS. Recall that K is a symmetric positive semi-
definite, square integrable function on X × X . It can be uniquely identified
with the Hilbert space H1 that is the completion of

{K(x, ·) : x ∈ X}

under the inner product⟨∑
i

ciK(xi, ·),
∑
j

c′jK(x′j , ·)

⟩
K

=
∑
i,j

cic
′
jK(xi, x

′
j).

In the rest of the section, we shall write H1 and H(K) interchangeably
with the latter notion emphasizing the one-to-one correspondence between a
kernel and a RKHS. Most, if not all, the commonly used kernels are bounded,
which we shall assume in what follows. In fact, without loss of generality,
we shall assume in the rest of the paper that supxK(x, x) = 1. Note that,
for any h ∈ H(K),

(2.1) ∥h∥∞ := sup
x∈X

|h(x)| = sup
x∈X

|⟨h,K(x, ·)⟩K | ≤ sup
x

∥K(x, ·)∥K∥h∥K ,

by the Cauchy-Schwartz inequality. Recall that

∥K(x, ·)∥2K = ⟨K(x, ·),K(x, ·)⟩K = K(x, x) ≤ 1.

Thus,
∥h∥∞ ≤ ∥h∥K ,

a convenient fact that we shall use repeatedly in the later analysis.
By the spectral theorem, K admits the following eigenvalue decomposi-

tion:

(2.2) K(x, x′) =
∑
k≥1

λjkφjk(x)φjk(x
′)

where λj1 ≥ λj2 ≥ · · · ≥ 0 are its eigenvalues and {φjk : k ≥ 1} are the
corresponding eigenfunctions such that

⟨φjk, φjk′⟩L2(Πj) = δkk′ .

Here Πj is the jth marginal distribution of Π, and δkk′ is the Kronecker delta.
Note that the decomposition (2.2) depends on the jth marginal distribution
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Πj through eigenfunctions φjks. It is well known that the RKHS-norm of
any h ∈ H(K) can be written as

∥h∥2K =
∑
k≥1

1

λjk
⟨h, φjk⟩2L2(Πj)

,

which means that the “smoothness” of functions in H(K) is determined by
the rate of decay of the eigenvalues λjk, and the unit balls in the RKHS
H(K) are ellipsoids in the space L2(Πj) with “axes”

√
λjk. For example, it

is well known that if Πj is the Lebesgue measure on [0, 1], then λjk ≍ k−2α

for Wα
2 .

2.2. Complexity of RKHS. How well we can recover a function from a
particular RKHS is fundamentally related to the capacity of the unit ball in
H(K):

B1(H(K)) := {h ∈ H(K) : ∥h∥K ≤ 1} .

See, e.g., Yang and Barron (1999). In particular, the capacity of B1(H(K))
can be measured by its covering number N (B1(H(K)), δ, ∥·∥∞) where ∥·∥∞
is defined in (2.1). Recall that for δ > 0 and a set F of continuous functions
on a metric space X , the covering number N (F , δ, ∥ · ∥∞) with respect to
the ∥ · ∥∞ metric is defined as the smallest integer m such that

F =

m∪
i=1

{f ∈ F : ∥f − f (i)∥∞ ≤ δ}

for some {f (i)}mi=1 ⊂ F . In particular, if λjk = O(k−2α) and supj,k ∥φjk∥∞ <
∞, then

(2.3) logN (B1(H(K)), δ, ∥ · ∥∞) ≤ cδ−
1
α , ∀δ > 0,

for some constant c > 0. This holds, for example, for Sobolev spaces of order
α.

For our purposes, we are also interested in certain data-dependent esti-
mates of the complexity of a function class, namely, Rademacher and Gaus-
sian complexities. See, e.g., Bartlett and Mendelson (2002). Write

(2.4) Rjn(u) := sup
h∈B1(H(K)):∥h∥L2(Πj)

≤u

∣∣∣∣∣ 1n
n∑

i=1

σih(xij)

∣∣∣∣∣
where σis are iid Rademacher variables, that is P(σi = 1) = P(σi = −1) =
1/2. The following bound of Rjn will become useful for our later analysis.
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Lemma 2.1. Assume that λjk ≤ c1k
−2α and supj,k ∥φjk∥L∞ < c2 for

some constants c1, c2 > 0. Then there exists a constant c > 0 depending on
α, c1 and c2 only such that for any β > 0, with probability at least 1− d−β,

Rjn(u) ≤ cn−1/2

(
u1−

1
2α + u

√
β log d+

β log d√
n

+ e−d

)
uniformly for all u ∈ [0, 1].

Another quantity of interests to us is the “empirical” Gaussian complexity
of the unit ball in H(K):

(2.5) Ẑjn(u) := sup
h∈B1(H(K)):∥h∥L2(Πjn)≤u

∣∣∣∣∣ 1n
n∑

i=1

εih(xij)

∣∣∣∣∣
where Πjn is the jth marginal of the empirical distribution Πn. Similar to

Lemma 2.1, we have the following bound for Ẑjn.

Lemma 2.2. Assume that λjk ≤ c1k
−2α and supj,k ∥φjk∥L∞ < c2 for

some constants c1, c2 > 0. Then there exists a constant c > 0 depending on
α, c1 and c2 only such that for any β > 0, with probability at least 1− d−β,

Ẑjn(u) ≤ cn−1/2
(
u1−

1
2α + u

√
β log d+ e−d

)
uniformly for all u ∈ [0, 1].

Both Lemmas 2.1 and 2.2 appears to be standard and follow from a
standard peeling argument (see, e.g., van de Geer, 2000). Although they
are useful for our analysis, we are unable to find these specific results in the
literature. For completeness, we present their proofs in Section 4.2.

3. Main Results. In what follows, we shall assume that there exists a
constant ηq > 1 such that

(3.1) η−1
q ∥g∥2L2(Π) ≤

d∑
j=1

∥gj∥2L2(Πj)
≤ ηq∥g∥2L2(Π)

for any g ∈ BR(ℓq(Hd)), where

g(x1, . . . , xd) = g1(x1) + · · ·+ gd(xd)
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and

∥g∥qℓq(Hd)
=

d∑
j=1

∥gj∥qH1
.

Condition (3.1) is a nonparametric version of the restricted eigenvalue con-
ditions commonly used in analyzing sparse estimation in high dimensional
linear regression; see, e.g., Bickel, Ritov and Tsybakov (2009). It is worth
noting that different from the usual restricted eigenvalue conditions in linear
regression, Condition (3.1) is on the distribution of X rather than the design
matrix, or observations X1, . . . , Xn. The condition is satisfied in particular
when Π is a product measure.

To fix ideas, in the rest of the paper, we shall also assume that there exist
a constant cλ > 1 and a non-increasing sequence of nonnegative numbers
λ1 ≥ λ2 ≥ · · · such that

(3.2) c−1
λ λk ≤ λjk ≤ cλλk,

for all j = 1, 2, . . . , d and k ≥ 1. In addition, similar to the treatment of high
dimensional linear models (see, e.g., Raskutti, Wainwright and Yu, 2011),
we shall assume in the rest of the paper that c0n

q/2 ≤ d ≤ en for some
universal constant c0 > 0 to ensure nontrivial probabilistic bounds. This, in
particular, is true in high dimensional settings where n < d < en.

We are now in position to present the main results. We first state a min-
imax lower bound.

Theorem 3.1. Assume that λk = k−2α for some α > 1/2. Under the
regression model (1.1) where f ∈ BR(ℓq(Hd)) and the covariate X follows a
distribution Π such that (3.1) and (3.2) hold, and the eigenfunctions {φjk :
j = 1, . . . , d, k ≥ 1} are uniformly bounded, there exists a constant c > 0
depending on σ2, α, R, cλ and ηq only such that

lim
n→∞

inf
f̃

sup
f∈BR(ℓq(Hd))

P

{
∥f̃ − f∥2L2(Π) ≥ c

[(
log d

n

)1−q/2

+ n− 2α
2α+1

]}
> 0.

The lower bound is established via Fano’s Lemma. See, e.g., Cover and
Thomas (1991). We relegate its proof to Section 4. Next, we show that the
rates given in the lower bound in the previous theorem is attainable. In
particular, we consider the least squares estimator:

(3.3) f̂ = argmin
g∈BR(ℓq(Hd))

{
1

n

n∑
i=1

[Yi − g(Xi)]
2

}
.

The next result shows that f̂ is indeed minimax rate optimal.
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Theorem 3.2. Assume that λk = k−2α for some α > 1/2. Under the
regression model (1.1) where f ∈ BR(ℓq(Hd)) and the covariate X follows a
distribution Π such that (3.1) and (3.2) hold, and the eigenfunctions {φjk :
j = 1, . . . , d, k ≥ 1} are uniformly bounded, there exists a constant c >
0 depending on σ2, α, R, cλ and ηq only such that for any β > 0 with
probability at least 1− d−β,

(3.4) ∥f̂ − f∥2L2(Π) ≤ c(β + 1)

[(
log d

n

)1−q/2

+ n− 2α
2α+1

]
,

and

(3.5) ∥f̂ − f∥2L2(Πn)
≤ c(β + 1)

[(
log d

n

)1−q/2

+ n− 2α
2α+1

]
,

where f̂ is the least squares estimator defined by (3.3).

The proof of Theorem 3.2 is also presented in Section 4. It relies on
several basic facts of the empirical processes theory such as symmetrization
inequalities and contraction inequalities for Rademacher processes that can
be found in the books of Ledoux and Talagrand (1991) and van der Vaart
and Wellner (1996). We also use Talagrand’s concentration inequality for
empirical processes; see, e.g., Talagrand (1996) and Bousquet (2002).

Theorems 3.1 and 3.2 together immediate imply that the minimax optimal
rate for estimating f ∈ BR(ℓq(Hd)) is

∥f̂ − f∥2L2(Π) ≍
(
log d

n

)1−q/2

+ n− 2α
2α+1 .

This result connects with two strands of literature – estimating high dimen-
sional linear regression assuming that the coefficient vector belongs to an ℓq
ball, and estimating a high dimensional additive model assuming that the
underlying function comes from a ℓ0(Hd) ball. In the case of linear regres-
sion, it is known that the ℓ1 penalty or the Lasso (Tibshirani, 1996) leads
to rate optimal estimators under suitable regularity conditions. See, e.g., Ye
and Zhang (2010). A similar phenomenon has also been observed for the
high dimensional additive models where it is shown that a mixed ℓ1 norm
penalty of the form

(3.6) a2n

d∑
j=1

∥gj∥H1 + an

d∑
j=1

∥gj∥L2(Πjn)
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can lead to rate optimal estimators with appropriate choices of the tuning
parameter an > 0. See, e.g., Koltchinskii and Yuan (2010) and Raskutti,
Wainwright and Yu (2012). The use of a mixed ℓ1 penalty of the form (3.6)
highlights the difference between linear models and additive models. When
dealing with nonparametric component functions, we need to penalize both
the RKHS norm and L2 norm; the former ensures smoothness of the estimate
whereas the latter is needed for thresholding redundant components and
hence inducing sparsity.

A natural question is whether or not a similar strategy will lead to min-
imax rate optimal estimators under an ℓq(Hd) ball for general 0 < q ≤ 1.
Somewhat surprisingly, the answer appears to be negative in general, and
we give here a heuristic argument why. The challenge occurs in the smooth
regime where

α <
1

q
− 1

2
, and d ≤ exp

[
n

2
2−q (

1
2α+1

− q
2)
]
.

Recall that the corresponding minimax optimal rate of convergence in the
smooth regime is given by

n− 2α
2α+1 .

As pointed out before, this is the best possible rate of convergence even if
there is only one nonzero component. And to achieve this rate, we need to
choose

(3.7) an ≳ n− α
2α+1 ,

because, if an is smaller, then in the particular case of one nonzero com-
ponent, the minimax optimal rate cannot be attained. See, e.g., Tsybakov
(2009) or Koltchinskii and Yuan (2010). Now for a general f from the unit
ℓq(Hd) ball, we will need a diverging number of nonzero components to ap-
proximate it. More precisely, as we shall show in the proofs, we may need
estimate up to ⌈(

n

log d

)q/2
⌉

nonzero components to balance the approximation error and estimation error
due to estimating the nonzero component functions. If we choose an to be of
the order given by (3.7), then each component can only be estimated with
squared L2 error of the order of

a2n ≳ n− 2α
2α+1 ,



12 M. YUAN AND D.X. ZHOU

leading to an overall rate of convergence no smaller than, up to a multiplica-
tive constant, (

n

log d

)q/2

n− 2α
2α+1 ,

at least under the assumption that Π is a product measure. This rate is ob-
viously suboptimal. As a result, in the smooth regime, no matter what value
an is, we cannot attain the minimax optimal rate of convergence through a
mixed ℓ1 penalty of the form (3.6).

As a working model, we assume that the eigenvalues decay at the same
polynomial rate across components, and the eigenfunctions φjks are bounded,
which hold true for Sobolev kernels among other commonly used kernels.
It is of interest to consider more general settings, for example, when the
eigenfunctions are unbounded, or if the eigenvalues decay at different rates,
or if the eigenvalues for some components decay even exponentially. It is
conceivable that our analysis could be extended to deal with more general
situations. But as in the single kernel case, treating these more general cases
is typically more tedious and technical, and we shall leave them for future
studies.

4. Proofs.

4.1. Proof of main results. We now prove the main results Theorems 3.1
and 3.2. For brevity, we shall also assume that σ2 = 1 and R = 1 in the
proofs. The more general case follows an identical arguments with different
constants.

4.1.1. Lower bounds. We establish the lower bound via Fano’s Lemma.
To this end, we need to construct a set of functions

G := {g1, . . . , gM} ⊂ B1(ℓq(Hd))

that are sufficiently apart from each other. Let N be a natural number whose
value will be specified later. For a matrix A ∈ {−1, 0, 1}d×N , denote by sA
the number of its nonzero rows, that is

sA = card {i : Ai· ̸= 0} ,

where Ai· is the ith row vector of A. Write

gA(x1, . . . , xd) = N−1/2s
−1/q
A

d∑
j=1

N∑
k=1

ajkλ
1/2
j,N+kφj,N+k(xj).
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It is clear that

∥gA∥qℓq(Hd)
≤ N−q/2s−1

A

d∑
j=1

∥∥∥∥∥
N∑
k=1

ajkλ
1/2
j,N+kφj,N+k(xj)

∥∥∥∥∥
q

H1

= s−1
A

d∑
j=1

(
N−1

N∑
k=1

a2jk

)q/2

.

Because a2jk ∈ {0, 1}, this can be further bounded by

∥gA∥qℓq(Hd)
≤ s−1

A

d∑
j=1

I(Ai· ̸= 0) = 1,

which implies that gA ∈ B1(ℓq(Hd)).
We now describe how to generate the set G. In particular, we consider

functions of the form gA with A ∈ {±1, 0}d×N as described before. We first
choose s rows of A to be nonzero, and set the rest of the rows of A to be zero.
The value of s will become clear later. To this end, we appeal to Vershamov-
Gilbert Lemma which states that we can find a set {θ1, . . . , θM1} ⊂ {0, 1}d
such that

(a) ∥θk∥ℓ1 = s for 1 ≤ k ≤ M1;
(b) for any k ̸= k′, ∥θk − θk′∥ℓ1 ≥ s/2;
(c) logM1 ≥ 1

4s log(d/s).

See, e.g., Massart (2007). For a given θ, we set zero the rows of A if the cor-
responding coordinate of θ is zero. In the next step, we fill in the remaining
rows of A with ±1. Again, by Vershamov-Gilbert Lemma, there exists a set
{Γ1, . . . ,ΓM2} ∈ {±1}s×N such that

(a’) for any k ̸= k′, ∥Γk − Γk′∥2F ≥ Ns/2;
(b’) logM2 ≥ Ns/8.

For a given Γ, we shall fill in the nonzero rows of A by Γ, leading to a
collection

G = {gA(θj ,Γk) : 1 ≤ j ≤ M1, 1 ≤ k ≤ M2},

where A(θ,Γ) is a d ×N matrix whose ith row is zero if the ith entry of θ
is zero, and the collection of the nonzero rows of A is given by Γ. In what
follows, for brevity, we shall write

G = {gAk
: 1 ≤ k ≤ M},
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where M = M1M2 and

A = {Ak : 1 ≤ k ≤ M}

is the collection of d×N matrices of the form A(θj ,Γk). By (c) and (b’),

logM ≥ 1

4
s log(d/s) +

1

8
Ns.

Note that, for any two matrices A,B ∈ {−1, 0, 1}d×N such that sA =
sB =: s, we have

∥gA − gB∥2L2(Π) = N−1s−2/q

∫
X d

 d∑
j=1

N∑
k=1

(ajk − bjk)λ
1/2
j,N+kφj,N+k(xj)

2

×

×dΠ((x1, . . . , xd)
⊤)

≥ η−1
q N−1s−2/q

d∑
j=1

∥∥∥∥∥
N∑
k=1

(ajk − bjk)λ
1/2
j,N+kφj,N+k

∥∥∥∥∥
2

L2(Πj)

= η−1
q N−1s−2/q

d∑
j=1

N∑
k=1

λj,N+k(ajk − bjk)
2

where the inequality follows from (3.1). By (3.2), this can be further lower-
bounded by

∥gA − gB∥2L2(Π) ≥ c−1
λ η−1

q N−1s−2/q
d∑

j=1

N∑
k=1

λN+k(ajk − bjk)
2

≥ c−1
λ η−1

q N−1s−2/qλ2N

d∑
j=1

N∑
k=1

(ajk − bjk)
2

= c−1
λ η−1

q 2−2αN−1−2αs−2/q∥A−B∥2F.

By construction, for any A ̸= A′ ∈ A,

∥A−A′∥2F ≥ Ns/2,

and hence,

∥gA − gA′∥2L2(Π) ≥ c−1
λ η−1

q 2−1−2αN−2αs1−2/q.
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On the other hand, for any A ∈ A,

∥gA∥2L2(Π) = N−1s−2/q

∫
X d

 d∑
j=1

N∑
k=1

ajkλ
1/2
j,N+kφj,N+k(xj)

2

dΠ((x1, . . . , xd)
⊤)

≤ ηqN
−1s−2/q

d∑
j=1

∥∥∥∥∥
N∑
k=1

ajkλ
1/2
j,N+kφj,N+k

∥∥∥∥∥
2

L2(Πj)

= ηqN
−1s−2/q

d∑
j=1

N∑
k=1

λj,N+ka
2
jk

≤ cληqN
−1s−2/q

d∑
j=1

N∑
k=1

λN+ka
2
jk

≤ cληqN
−1s−2/qλN

d∑
j=1

N∑
k=1

a2jk

= cληqN
−2αs1−2/q.

Following a standard argument, the lower bound can be reduced to the
error probability in a multi-way hypothesis test. See, e.g., Tsybakov (2009).
More specifically, let Θ be a random variable uniformly distributed on {1, . . . ,M}.
Then it can be deduced that

inf
f̃

sup
f∈B1(ℓq(Hd))

P
{
∥f̃ − f∥2L2(Π) ≥

1

4
min

A̸=A′∈A
∥gA − gA′∥2L2(Π)

}
≥ inf

Θ̂
P{Θ̂ ̸= Θ},

where the infimum on the righthand side is taken over all decision rules that
are measurable functions of the data. By Fano’s Lemma, we get

(4.1) P
{
Θ̂ ̸= Θ|X1, . . . , Xn

}
≥ 1− 1

logM
[IX1,...,Xn(Y1, . . . , Yn; Θ) + log 2] ,

where IX1,...,Xn(Y1, . . . , Yn; Θ) is the mutual information between Θ and
Y1, . . . , Yn with X1, . . . , Xn being held fixed. It is not hard to derive

EX1,...,Xn [IX1,...,Xn(Y1, . . . , Yn; Θ)] ≤
(

M
2

)−1 ∑
A̸=A′∈A

EX1,...,XnK(PgA ||PgA′ )

≤ n

2

(
M
2

)−1 ∑
A̸=A′∈A

EX1,...,Xn∥gA − gA′∥2L2(Πn)
,
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where K(·||·) denote the Kullback-Leibler distance, Pg stands for conditional
distribution of {Yi : 1 ≤ i ≤ n} given {Xi : 1 ≤ i ≤ n} and the true
regression function in (1.1) is given by f = g, and for any g : X d → R,

∥g∥2L2(Πn)
=

1

n

n∑
i=1

[g(Xi)]
2.

Thus,

EX1,...,Xn [IX1,...,Xn(Y1, . . . , Yn; Θ)] ≤ n

2

(
M
2

)−1 ∑
A̸=A′∈A

∥gA − gA′∥2L2(Π)

≤ n

2
max

A ̸=A′∈A
∥gA − gA′∥2L2(Π)

≤ 2nmax
A∈A

∥gA∥2L2(Π)

≤ 2cληqnN
−2αs1−2/q.

Now, from (4.1), we get

inf
f̃

sup
f∈B1(ℓq(Hd))

P
{
∥f̃ − f∥22 ≥ c−1

λ η−1
q 2−2−2αN−2αs1−2/q

}
≥ inf

Θ̂
P{Θ̂ ̸= Θ}

≥ 1−
EX1,...,Xn [IX1,...,Xn(Y1, . . . , Yn; Θ)] + log 2

logM

≥ 1− 2cληqnN
−2αs1−2/q + log 2

1
4s log(d/s) +

1
8Ns

.

Taking N = 1 and

s = C1

(
n

log d

)q/2

for a sufficiently small constant C1 > 0 yields

(4.2) inf
f̃

sup
f∈B1(ℓq(Hd))

P

{
∥f̃ − f∥22 ≥ C2

(
log d

n

)1−q/2
}

≥ 3/4,

for some constant C2 > 0 depending on α, ηq and cλ only. On the other
hand, if α ≤ 1/q − 1/2, taking

s = 1, and N = C1n
1

2α+1
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for a sufficiently small constant C1 > 0 yields

(4.3) inf
f̃

sup
f∈B1(ℓq(Hd))

P
{
∥f̃ − f∥22 ≥ C2n

− 2α
2α+1

}
≥ 3/4.

Combining (4.2) and (4.3), we have

inf
f̃

sup
f∈B1(ℓq(Hd))

P

{
∥f̃ − f∥22 ≥ C2

[(
log d

n

)1−q/2

+ n− 2α
2α+1

]}
≥ 3/4,

which completes the proof.

4.1.2. Upper bounds. We now prove the upper bounds given in Theorem
3.2. By definition,

1

n

n∑
i=1

[
Yi − f̂(Xi)

]2
≤ 1

n

n∑
i=1

[Yi − f(Xi)]
2 ,

which immediately implies that

(4.4)
1

n

n∑
i=1

[
f̂(Xi)− f(Xi)

]2
≤ 2

n

n∑
i=1

εi

[
f̂(Xi)− f(Xi)

]
.

Write ∆j = f̂j − fj and ∆ = f̂ − f . It is clear that ∆ =
∑d

j=1∆j .
Our main strategy is to derive upper and lower bounds for the right and

left hand side of (4.4) respectively, and then put them together to derive
(3.4).

Step 1. Bounding the righthand side of (4.4).. Observe that∣∣∣∣∣ 1n
n∑

i=1

εi∆j(xij)

∣∣∣∣∣ ≤ ∥∆j∥H1Ẑjn

(∥∆j∥L2(Πjn)

∥∆j∥H1

)
,

where Ẑjn is defined by (2.5). By Lemma 2.2, this can be further bounded
by

C1n
−1/2

(
∥∆j∥

1− 1
2α

L2(Πjn)
∥∆j∥

1
2α
H1

+ ∥∆j∥L2(Πjn)

√
(β + 1) log d+ e−d∥∆j∥H1

)
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for some constant C1 > 0, with probability at least 1 − d−(β+1). By union
bound, with probability 1− d−β,

2

n

n∑
i=1

εi

[
f̂(Xi)− f(Xi)

]
≤ 2

d∑
j=1

∣∣∣∣∣ 1n
n∑

i=1

εi∆j(xij)

∣∣∣∣∣
≤ 2C1n

−1/2
d∑

j=1

∥∆j∥
1− 1

2α

L2(Πjn)
∥∆j∥

1
2α
H1

+2C1n
−1/2

√
(β + 1) log d

d∑
j=1

∥∆j∥L2(Πjn)

+2C1n
−1/2e−d

d∑
j=1

∥∆j∥H1 .(4.5)

We denote by E1 the event that the above inequality holds. We now bound
the three terms on the rightmost side separately.

We first derive a bound for

n−1/2
d∑

j=1

∥∆j∥
1
2α
H1

∥∆j∥
1− 1

2α

L2(Πjn)
.

We treat the cases of 2/(2α+ 1) ≥ q and 2/(2α+ 1) < q separately.

Case 1: 2/(2α + 1) ≥ q. By Young’s inequality, for a constant ζ > 1 whose
value will be specified later,

n−1/2∥∆j∥
1
2α
H1

∥∆j∥
1− 1

2α

L2(Πjn)
≤ ζ−

4α
2α−1 ∥∆j∥2L2(Πjn)

+ζ
4α

2α+1n− 2α
2α+1 ∥∆j∥

2
2α+1

H1
.

Note that for any q ≤ q′ ≤ 2,

d∑
j=1

∥∆j∥q
′

H1
≤ 2

 d∑
j=1

∥f̂j∥q
′

H1
+

d∑
j=1

∥fj∥q
′

H1


≤ 2

 d∑
j=1

∥f̂j∥qH1
+

d∑
j=1

∥fj∥qH1


≤ 4.

In particular, we get
d∑

j=1

∥∆j∥
2

2α+1

H1
≤ 4,
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Hence,
(4.6)

d∑
j=1

n−1/2∥∆j∥
1
2α
H1

∥∆j∥
1− 1

2α

L2(Πjn)
≤ ζ−

4α
2α−1 ∥∆j∥2L2(Πjn)

+ 4ζ
4α

2α+1n− 2α
2α+1 .

Case 2: 2/(2α+ 1) < q.Write

n−1/2
d∑

j=1

∥∆j∥
1
2α
H1

∥∆j∥
1− 1

2α

L2(Πjn)

= n−1/2
∑

j:∥∆j∥H1
>n−1/2

∥∆j∥
1
2α
H1

∥∆j∥
1− 1

2α

L2(Πjn)

+n−1/2
∑

j:∥∆j∥H1
≤n−1/2

∥∆j∥
1
2α
H1

∥∆j∥
1− 1

2α

L2(Πjn)
.

For the first term on the right hand side, by a similar argument as
before, we have

n−1/2
∑

j:∥∆j∥H1
>n−1/2

∥∆j∥
1
2α
H1

∥∆j∥
1− 1

2α

L2(Πjn)

≤ ζ−
4α

2α−1

∑
j:∥∆j∥H1

>n−1/2

∥∆j∥2L2(Πjn)
+ ζ

4α
2α+1n− 2α

2α+1

∑
j:∥∆j∥H1

>n−1/2

∥∆j∥
2

2α+1

H1

≤ ζ−
4α

2α−1

∑
j:∥∆j∥H1

>n−1/2

∥∆j∥2L2(Πjn)
+ ζ

4α
2α+1n−(1− q

2
)

∑
j:∥∆j∥H1

>n−1/2

∥∆j∥qH1

≤ ζ−
4α

2α−1

∑
j:∥∆j∥H1

>n−1/2

∥∆j∥2L2(Πjn)
+ 4ζ

4α
2α+1n−(1− q

2
),

where in the last inequality, we used the fact that

∑
j:∥∆j∥H1

>n−1/2

∥∆j∥qH1
≤

d∑
j=1

∥∆j∥qH1
≤ 2

d∑
j=1

(
∥f̂j∥qH1

+ ∥fj∥qH1

)
≤ 4.

On the other hand, because

∥∆j∥L2(Πjn) ≤ ∥∆j∥L∞ ≤ ∥∆j∥H1 ,
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we get

n−1/2
∑

j:∥∆j∥H1
≤n−1/2

∥∆j∥
1
2α
H1

∥∆j∥
1− 1

2α

L2(Πjn)
≤ n−1/2

∑
j:∥∆j∥H1

≤n−1/2

∥∆j∥H1

≤ n−(1−q/2)
∑

j:∥∆j∥H1
≤n−1/2

∥∆j∥qH1

≤ n−(1−q/2)
d∑

j=1

∥∆j∥qH1

≤ 4n−(1−q/2).

Thus,
(4.7)

n−1/2
d∑

j=1

∥∆j∥
1
2α
H1

∥∆j∥
1− 1

2α

L2(Πjn)
≤ ζ−

4α
2α−1

d∑
j=1

∥∆j∥2L2(Πjn)
+8ζ

4α
2α+1n−(1− q

2
).

Combing (4.6) and (4.7), we get
(4.8)

n−1/2
d∑

j=1

∥∆j∥
1
2α
H1

∥∆j∥
1− 1

2α

L2(Πjn)
≤ ζ−

4α
2α−1

d∑
j=1

∥∆j∥2L2(Πjn)
+8ζ

4α
2α+1n−(1−max{ q

2
, 1
2α+1

}).

By Theorem 4 of Koltchinskii and Yuan (2010), there exists a numerical
constant C2 > 1 such that with probability at least 1− d−β for all h ∈ H1,
and j = 1, . . . , d,

(4.9) ∥h∥L2(Πj) ≤ C2

[
∥h∥L2(Πjn) +

(
n− α

2α+1 +

√
(β + 1) log d

n

)
∥h∥H1

]
,

and

(4.10) ∥h∥L2(Πjn) ≤ C2

[
∥h∥L2(Πj) +

(
n− α

2α+1 +

√
(β + 1) log d

n

)
∥h∥H1

]
.

Denote by E2 the event that both (4.9) and (4.10) hold. Under E2,

d∑
j=1

∥∆j∥2L2(Πjn)
≤ 2C2

2

d∑
j=1

[
∥∆j∥2L2(Πj)

+

(
n− 2α

2α+1 +
(β + 1) log d

n

)
∥∆j∥2H1

]

≤ 2C2
2

d∑
j=1

∥∆j∥2L2(Πj)
+ 8C2

2

(
n− 2α

2α+1 +
(β + 1) log d

n

)
,
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where the second inequality follows from the fact that

d∑
j=1

∥∆j∥2H1
≤ 4.

By (3.1), this implies that

d∑
j=1

∥∆j∥2L2(Πjn)
≤ 2C2

2ηq∥∆∥2L2(Π) + 8C2
2

(
n− 2α

2α+1 +
(β + 1) log d

n

)
.

Together with (4.8), we get

n−1/2
d∑

j=1

∥∆j∥
1
2α
H1

∥∆j∥
1− 1

2α

L2(Πjn)
≤ 2C2

2ηqζ
− 4α

2α−1 ∥∆∥2L2(Π)

+8C2
2ζ

− 4α
2α−1

(
n− 2α

2α+1 +
(β + 1) log d

n

)
+8ζ

4α
2α+1n−(1−max{ q

2
, 1
2α+1

}).(4.11)

The second term on the rightmost hand side of (4.5) can also be bounded
under event E2. By (4.10),

d∑
j=1

∥∆j∥L2(Πjn) ≤ C2

d∑
j=1

∥∆j∥L2(Πj) + C2

(
n− α

2α+1 +

√
(β + 1) log d

n

)
d∑

j=1

∥∆j∥H1

≤ C2

d∑
j=1

∥∆j∥L2(Πj) + 4C2

(
n− α

2α+1 +

√
(β + 1) log d

n

)
,(4.12)

where in the second inequality we used the fact that

d∑
j=1

∥∆j∥H1 ≤
d∑

j=1

∥∆j∥qH1
≤ 4.

Write

d∑
j=1

∥∆j∥L2(Πj) ≤
∑

j:∥∆j∥L2(Πj)
>
√

log d
n

∥∆j∥L2(Πj)+
∑

j:∥∆j∥L2(Πj)
≤
√

log d
n

∥∆j∥L2(Πj).
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The first term can be bounded by the Cauchy-Schwartz inequality:∑
j:∥∆j∥L2(Πj)

>
√

log d
n

∥∆j∥L2(Πj)

≤

(
card

{
j : ∥∆j∥L2(Πj) >

√
log d

n

})1/2

 ∑
j:∥∆j∥L2(Πj)

>
√

log d
n

∥∆j∥2L2(Πj)


1/2

.

Observe that

card

{
j : ∥∆j∥L2(Πj) >

√
log d

n

}
≤
(
log d

n

)−q/2 d∑
j=1

∥∆j∥qH1
≤ 4

(
log d

n

)−q/2

.

Thus,

∑
j:∥∆j∥L2(Πj)

>
√

log d
n

∥∆j∥L2(Πj) ≤ 4

(
log d

n

)−q/4
 d∑

j=1

∥∆j∥2L2(Πj)

1/2

≤ 4η1/2q

(
log d

n

)−q/4

∥∆∥L2(Π).

Together with the fact that

∑
j:∥∆j∥L2(Πj)

≤
√

log d
n

∥∆j∥L2(Πj) ≤
∑

j:∥∆j∥L2(Πj)
≤
√

log d
n

∥∆j∥qL2(Πj)

(
log d

n

)(1−q)/2

≤
(
log d

n

)(1−q)/2 d∑
j=1

∥∆j∥qL2(Πj)

≤ 4

(
log d

n

)(1−q)/2

,

we get

(4.13)

d∑
j=1

∥∆j∥L2(Πj) ≤ 4η1/2q

(
log d

n

)−q/4

∥∆∥L2(Π) + 4

(
log d

n

) 1−q
2

.
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In the light of (4.12), we have√
log d

n

d∑
j=1

∥∆j∥L2(Πjn) ≤ 4C2η
1/2
q

(
log d

n

)1/2−q/4

∥∆∥L2(Π)

+4C2n
− α

2α+1

√
log d

n
+ 8C2

√
β + 1

(
log d

n

)1− q
2

,(4.14)

where we used the fact that log d < n and C2 > 1.
Combing (4.5), (4.11), (4.14) and the fact that

d∑
j=1

∥∆j∥H1 ≤ 4,

we get

2

n

n∑
i=1

εi

[
f̂(Xi)− f(Xi)

]
≤ C3ηqζ

− 4α
2α−1 ∥∆∥2L2(Π)

+C3ζ
− 4α

2α−1

(
n− 2α

2α+1 +
(β + 1) log d

n

)
+C3ζ

4α
2α+1n−(1−max{ q

2
, 1
2α+1

})

+C3

√
β + 1η1/2q

(
log d

n

)1/2−q/4

∥∆∥L2(Π)

+C3

√
β + 1n− α

2α+1

√
log d

n

+C3

√
β + 1

(
log d

n

)1− q
2

+C3n
−1/2e−d,(4.15)

for some constant C3 > 0, under the event E1 ∩ E2.

Step 2. Bounding the lefthand side of (4.4).. To bound the lefthand side
of (4.4), first observe that

(4.16) ∥∆∥2L2(Π) − ∥∆∥2L2(Πn)
≤ sup

g∈B4(ℓq(Hd))
∥g∥L2(Π)≤∥∆∥L2(Π)

(
∥g∥2L2(Π) − ∥g∥2L2(Πn)

)

Note that for any g ∈ B4(ℓq(Hd)),

∥g∥2L∞ ≤ ∥g∥2ℓ1(Hd)
≤
(
∥g∥qℓq(Hd)

)2
≤ 16,
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and
∥g∥4L2(Π) ≤ ∥g∥2L∞∥g∥2L2(Π) ≤ 16∥g∥2L2(Π).

By Talagrand’s concentration inequality, for any fixed u ∈ [0, 1],

sup
g∈B4(ℓq(Hd))
∥g∥L2(Π)≤u

(
∥g∥2L2(Π) − ∥g∥2L2(Πn)

)

≤ 2

E sup
g∈B4(ℓq(Hd))
∥g∥L2(Π)≤u

(
∥g∥2L2(Π) − ∥g∥2L2(Πn)

)
+ 4u

√
t

n
+

16t

n

 ,

with probability at least 1− e−t. By symmetrization inequality,

E sup
g∈B4(ℓq(Hd))
∥g∥L2(Π)≤u

(
∥g∥2L2(Π) − ∥g∥2L2(Πn)

)
≤ 2E sup

g∈B4(ℓq(Hd))
∥g∥L2(Π)≤u

(
1

n

n∑
i=1

σig
2(Xi)

)
.

Note that g2 is 8-Lipschitz function on B4(ℓq(Hd)). By contraction inequality,

E sup
g∈B4(ℓq(Hd))
∥g∥L2(Π)≤u

(
1

n

n∑
i=1

σig
2(Xi)

)
≤ 8E sup

g∈B4(ℓq(Hd))
∥g∥L2(Π)≤u

(
1

n

n∑
i=1

σig(Xi)

)
.

Again by Talagrand’s concentration inequality, there exists a numerical con-
stant C4 > 0 such that with probability at least 1− e−t,

E sup
g∈B4(ℓq(Hd))
∥g∥L2(Π)≤u

(
1

n

n∑
i=1

σig(Xi)

)

≤ C4

 sup
g∈B4(ℓq(Hd))
∥g∥L2(Π)≤u

(
1

n

n∑
i=1

σig(Xi)

)
+ u

√
t

n
+

t

n



≤ C4

 sup∑d
j=1 ∥gj∥

q
H1

≤4

∥∑d
j=1 gj∥L2(Π)

≤u

d∑
j=1

(
1

n

n∑
i=1

σigj(xij)

)
+ u

√
t

n
+

t

n

 .
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In other words,

sup
g∈B4(ℓq(Hd))
∥g∥L2(Π)≤u

(
∥g∥2L2(Π) − ∥g∥2L2(Πn)

)

≤ 16C4

 sup∑d
j=1 ∥gj∥

q
H1

≤4

∥∑d
j=1 gj∥L2(Π)

≤u

d∑
j=1

(
1

n

n∑
i=1

σigj(xij)

)
+ u

√
t

n
+

t

n

 ,(4.17)

with probability at least 1− 2e−t.
Note that

1

n

n∑
i=1

σigj(xij) ≤ ∥gj∥H1 sup
∥h∥H1

=1

∥h∥L2(Πj)
≤∥gj∥L2(Πj)

/∥gj∥H1

(
1

n

n∑
i=1

σih(xij)

)

By Lemma 2.2 and union bound, there exists a constant C5 > 0 such that

sup
∥h∥H1

=1

∥h∥L2(Πj)
≤u

(
1

n

n∑
i=1

σih(xij)

)
≤ C5n

−1/2
(
u1−

1
2α + u

√
(β + 1) log d+ e−d

)
,

uniformly over u ∈ [0, 1] and j = 1, . . . , d with probability at least 1− d−β.
Denote this event by E3, and we shall now proceed conditional on E3.

It is not hard to see that, under E3,
d∑

j=1

(
1

n

n∑
i=1

σigj(xij)

)
≤ C5n

−1/2
d∑

j=1

(
∥gj∥

1
2α
H1

∥gj∥
1− 1

2α

L2(Πj)

+∥gj∥L2(Πj)

√
(β + 1) log d+ e−d∥gj∥H1

)
.(4.18)

Following the same argument as that for (4.8), it can derived

n−1/2 sup∑d
j=1 ∥gj∥

q
H1

≤4

∥∑d
j=1 gj∥L2(Π)

≤u

d∑
j=1

∥gj∥
1
2α
H1

∥gj∥
1− 1

2α

L2(Πj)

≤ ζ−
4α

2α−1 sup∑d
j=1 ∥gj∥

q
H1

≤4

∥∑d
j=1 gj∥L2(Π)

≤u

d∑
j=1

∥gj∥2L2(Πj)
+ 8ζ

4α
2α+1n−(1−max{ q

2
, 1
2α+1

})

≤ ζ−
4α

2α−1 ηqu
2 + 8ζ

4α
2α+1n−(1−max{ q

2
, 1
2α+1

}).(4.19)
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Similar to (4.13), it can also be shown that for any g1, . . . , gd such that

d∑
j=1

∥gj∥qH1
≤ 4 and

d∑
j=1

∥gj∥L2(Πj) ≤ u,

we have

(4.20)
d∑

j=1

∥gj∥L2(Πj) ≤ 4η1/2q

(
log d

n

)−q/4

u+ 4

(
log d

n

) 1−q
2

.

Combining (4.18), (4.19) and (4.20), we have

sup∑d
j=1 ∥gj∥

q
H1

≤4

∥∑d
j=1 gj∥L2(Π)

≤u

d∑
j=1

(
1

n

n∑
i=1

σigj(xij)

)

≤ C5ζ
− 4α

2α−1 ηqu
2 + 8C5ζ

4α
2α+1n−(1−max{ q

2
, 1
2α+1

})

+4C5

√
(β + 1) log d

n

(
η1/2q

(
log d

n

)−q/4

u+

(
log d

n

) 1−q
2

)
+C5n

−1/2e−d.

Together with (4.17), conditional on E3,

sup
g∈B4(ℓq(Hd))
∥g∥L2(Π)≤u

(
∥g∥2L2(Π) − ∥g∥2L2(Πn)

)

≤ C6ζ
− 4α

2α−1 ηqu
2 + C6ζ

4α
2α+1n−(1−max{ q

2
, 1
2α+1

})

+C6

√
(β + 1) log d

n

(
η1/2q

(
log d

n

)−q/4

u+

(
log d

n

) 1−q
2

)

+C6n
−1/2e−d + C6

(
u

√
t

n
+

t

n

)
.

holds for some constant C6 > 0, with probability at least 1− 2e−t. Using a
peeling argument similar to that for Lemma 2.1, we can make this bound
uniformly over u ∈ [0, 1]. More specifically, it can be shown that there exist
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constants C7 > 0 such that, conditional on E3,

sup
g∈B4(ℓq(Hd))
∥g∥L2(Π)≤u

(
∥g∥2L2(Π) − ∥g∥2L2(Πn)

)

≤ C6ζ
− 4α

2α−1 ηqu
2 + C6ζ

4α
2α+1n−(1−max{ q

2
, 1
2α+1

})

+C6

√
(β + 1) log d

n

(
η1/2q

(
log d

n

)−q/4

u+

(
log d

n

) 1−q
2

)
+C6n

−1/2e−d

+C7

(
u

√
(β + 1) log d

n
+

(β + 1) log d

n

)
,(4.21)

uniformly over all u ∈ [0, 1] with probability at least 1− d−β. Denote by E4
the event that inequality (4.21) holds. Then

P{E4} ≥ P{E4|E3}P(E3) ≥ (1− d−β)2 ≥ 1− 2d−β.

Together with (4.16), we get, under event E4,

∥∆∥2L2(Π) ≤ ∥∆∥2L2(Πn)
+ C8ζ

− 4α
2α−1 ηqu

2 + C8ζ
4α

2α+1n−(1−max{ q
2
, 1
2α+1

})

+C8

√
(β + 1) log d

n

(
η1/2q

(
log d

n

)−q/4

∥∆∥L2(Π) +

(
log d

n

) 1−q
2

)
+C8n

−1/2e−d

+C8

(
u

√
(β + 1) log d

n
+

(β + 1) log d

n

)
,(4.22)

for some constant C8 > 0.
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Step 3. Putting it together.. Combining (4.15) and (4.22), we get

∥∆∥2L2(Π) ≤ C9ηqζ
− 4α

2α−1 ∥∆∥2L2(Π)

+C9ζ
− 4α

2α−1
(β + 1) log d

n

+C9ζ
4α

2α+1n−(1−max{ q
2
, 1
2α+1

})

+C9

√
β + 1

(
log d

n

)1/2−q/4

∥∆∥L2(Π)

+C9

√
β + 1n− α

2α+1

√
log d

n

+C9(β + 1)

(
log d

n

)1− q
2

+C9n
−1/2e−d,

for some constant C9 > 0, under the event E1 ∩ E2 ∩ E4.
Take ζ large enough so that

C9ηqζ
− 4α

2α−1 ≤ 1/2.

Then

∥∆∥2L2(Π) ≤ 2C9ζ
− 4α

2α−1
(β + 1) log d

n

+2C9ζ
4α

2α+1n−(1−max{ q
2
, 1
2α+1

})

+2C9

√
β + 1

(
log d

n

)1/2−q/4

∥∆∥L2(Π)

+2C9

√
β + 1n− α

2α+1

√
log d

n

+2C9

√
β + 1

(
log d

n

)1− q
2

+2C9n
−1/2e−d.

Therefore, there exists a constant C10 > 0 such that, under the event E1 ∩
E2 ∩ E4,

∥∆∥2L2(Π) ≤ C10(β+1)

(
n− 2α

2α+1 +

(
log d

n

)1− q
2

+

(
log d

n

)1/2−q/4

∥∆∥L2(Π)

)
,

which implies (3.4). Statement (3.4) now follows from the fact that

P{E1 ∩ E2 ∩ E4} ≥ 1− P{Ec
1} − P{Ec

2} − P{Ec
4} ≥ 1− 4d−β,
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and appropriate re-scaling of the constants.
To show (3.5), we first derive, via an identical argument to Step 2, that

∥∆∥2L2(Πn)
≤ ∥∆∥2L2(Π) + C11ζ

− 4α
2α−1 ηqu

2 + C11ζ
4α

2α+1n−(1−max{ q
2
, 1
2α+1

})

+C11

√
(β + 1) log d

n

((
log d

n

)−q/4

u+ 2

(
log d

n

) 1−q
2

)
+C11n

−1/2e−d

+C11

(
u

√
(β + 1) log d

n
+

(β + 1) log d

n

)
,(4.23)

for some constant C11 > 0. Together with (3.4), this implies (3.5).

4.2. Proof of auxiliary results. We now present the proofs of Lemmas 2.1
and 2.2.

Proof of Lemma 2.1. An application of Talagrand’s concentration in-
equality yields, with probability at least 1− e−t

Rjn(u) ≤ 2

(
ERjn(u) + u

√
t

n
+

t

n

)
.

It is well known that there exists a numerical constant C1 > 0

ERjn(u) ≤
{
E [Rjn(u)]

2
}1/2

≤ C1n
−1/2u1−

1
2α .

See, e.g., Mendelson (2002) or Koltchinskii (2011). In other words, with
probability at least 1− e−t,

Rjn(u) ≤ C2

(
n−1/2u1−

1
2α + u

√
t

n
+

t

n

)

for some numerical constant C2 > 0. We now make this inequality uniform
over u ∈ [0, 1] via a peeling argument.

In particular, with probability at least 1−exp(−β log d−2 log j) for some
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constant β > 0,

sup
∥h∥H1

≤1

2−j≤∥h∥L2(Πj)
≤2−j+1

∣∣∣∣∣ 1n
n∑

i=1

σih(xij)

∣∣∣∣∣
≤ Rjn(2

−j+1)

≤ C2n
−1/2

[
(2−j+1)1−

1
2α + 2−j+1(β log d+ 2 log j)1/2

+n−1/2(β log d+ 2 log j)

]
.

By union bound, there exists a constant C3 > 0 such that

Rjn(u) ≤ C3n
−1/2

(
u1−

1
2α + u

√
β log d+

β log d√
n

)
,

holds for any u ∈ (e−d(2α/(2α−1)), 1], with probability at least

1−
⌈2αd log2 e/(2α−1)⌉∑

j=1

exp(−β log d− 2 log j) ≥ 1− 2d−β.

On the other hand, when u ≤ e−d(2α/(2α−1)),

Rjn(u) ≤ Rjn(e
−d(2α/(2α−1)))

≤ C2n
−1/2

(
e−d + e−d(2α/(2α−1))

√
β log d+

β log d√
n

)
≤ 2C2n

−1/2

(
e−d +

β log d√
n

)
,

with probability at least 1− d−β, for sufficiently large d. In summary, there
exists a constant C4 > 0 such that

Rjn(u) ≤ C4n
−1/2

(
u1−

1
2α + u

√
β log d+

β log d√
n

+ e−d

)
,

uniformly over all u ∈ [0, 1] with probability at least 1− 3d−β.

Proof of Lemma 2.2. Note that∫ u

0
[logN (B1(H1), δ, ∥ · ∥L∞)]1/2 du ≤ cαδ

1− 1
2α .
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Therefore, there exist constants C1, C2 > 0 such that for any fixed u ∈ [0, 1]

P
{
Ẑjn(u) ≤ C1n

−1/2
(
u1−

1
2α + ut1/2

)}
≤ C2 exp

[
−(u−1/α + t)

]
.

See, e.g., van de Geer (2000; Corollary 8.3). The rest of the proof follows a
similar peeling argument as that for Lemma 2.1 and is omitted for brevity.
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