Liu
Bie Ju Centre for Mathematical Sciences
City University of Hong Kong
Mathematical Analysis and its Applications
Colloquium
Organized by Prof. Philippe G. Ciarlet
and Prof. Roderick Wong
High-Order Numerical Methods for Delay Differential
and Integral Equations with Variable Delays
by
Professor Hermann Brunner
Hong Kong Baptist University
and
Memorial University of Newfoundland
Canada
Date: April 26, 2006 (Wednesday)
Time: 4:30 pm to 5:30 pm
Venue: Room B6605 (Faculty Conference Room)
Blue Zone, Level 6
Academic Building
City University of Hong Kong
Abstract: In the first part of this talk I will present a brief survey of some recent progress in the analysis of collocation methods for the numerical solution
of delay differential and integral equations, focusing on quantitative properties (e.g. global and local superconvergence) and their dependence on the type of delay (linear/nonlinear; nonvanishing/vanishing).
The second part of the talk will be concerned with delay integral and integro-differential equations, which may be viewed as generalizations of the celebrated (and innocent-looking) pantograph delay differential equation u'(t) = au(t)+bu(qt), t ≥ 0 (where 0<q>1). The discussion will reveal that our understanding of many aspects of collocation methods for such functional equations with (linear or nonlinear) vanishing delays is far from being complete.
(Tea, coffee and cookies will be provided at the Faculty Common Room in
B6501 before the colloquium from 4:00 to 4:30 pm. Please come and join
us!)
** All interested
are welcome **
For enquiry: 2788-9816
<<back
|