City University of Hong Kong Course Syllabus

offered by College/School/Department of Physics with effect from Semester A 2025/26

Part I Course Overview

Course Title:	Machine Learning in Physics
Course Code	РНУ6604
Course Coue.	One semester
Course Duration:	
	3
Credit Units:	
	P6
Level:	
	English
Instruction:	
	English
Medium of Assessment:	
D	Student should learn Python programming before taking the course. One way
<i>Course Code and Title</i>	to achieve this is to take PHY 5504 Data Acquisition and Processing Skills for Physicists I.
	NĂ
Precursors : <i>(Course Code and Title)</i>	
	NA
Equivalent Courses: (Course Code and Title)	
	NA
Exclusive Courses: (Course Code and Title)	

Part II Course Details

1. Abstract

(A 150-word description about the course)

The course consists of two parts. The first part of the course will enable the student to learn the theory and gain hands-on experiences on a variety of machine-learning techniques. We will explain these techniques from physicists' point of view, for example, we will use physics terminology when applicable, and explain conceptual links between machine learning and physics. In the second part, several faculty members of the Department of Physics will teach real-life examples of how to apply machine learning in their research.

2. Course Intended Learning Outcomes (CILOs)

(CILOs state what the student is expected to be able to do at the end of the course according to a given standard of performance.)

No.	CILOs	Weighting* (if applicable)	Discov curricu learnin (please	very-en llum rel g outco e tick	riched lated omes where
			approp	riate)	
			Al	A2	A3
1.	Understand the important machine-learning algorithms	40	\checkmark	✓	
	covered in the lectures. Understand how they work, and				
	what are their strengths and weaknesses.				
2.	Being able to implements these algorithms in programs.	30		\checkmark	\checkmark
3.	Understand how to solve real-life machine-learning	30	\checkmark	\checkmark	
	problems in physics research.				
* If we	eighting is assigned to CILOs, they should add up to 100%.	100%		•	•

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to self-life problems.

A3: Accomplishments Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

3. Learning and Teaching Activities (LTAs)

(LTAs designed to facilitate students' achievement of the CILOs.)

LTA	Brief Description	ef Description CILO No.			Hours/week
		1	2	3	(if applicable)
Lectures	Presentation of course material	\checkmark	\checkmark	\checkmark	3

4. Assessment Tasks/Activities (ATs) (ATs are designed to assess how well the students achieve the CILOs.)

Assessment Tasks/Activities	CILO No.		Weighting*	Remarks	
	1 2 3		3		
Continuous Assessment: 60 %					
Programming Assignments \checkmark \checkmark		\checkmark	60		
Examination: 40 % (duration: 2 hours, if applicable)					
* The weightings should add up to 100%.				100%	

5. Assessment Rubrics

(Grading of student achievements is based on student performance in assessment tasks/activities with the following rubrics.)

	Applicable to students admitted before Semester	A 2022/23 and in Semester A 2024/25 & thereafter
--	---	--

Assessment Task	Criterion	Excellent	Good	Fair	Marginal	Failure
		(A+, A, A-)	(B+, B, B-)	(C+, C, C-)	(D)	(F)
1. Programming	The program the student	The program	The program runs	The program is	The program is	The program
Assignments	writes.	produces	correctly but does	buggy but	buggy and	fails to
		near-optimal	not produce	demonstrates that	demonstrates	demonstrate that
		results.	near-optimal	the student	that the student	the student
			results.	understands many	understands very	understands any
				basic concepts.	few basic	basic concept.
				-	concepts.	-
2. Examination	The student demonstrates	High (excellent,	Significant (good	Satisfied (fair	Basic (basic	Not reaching
	comprehensive	detailed	understanding	understanding	understanding	marginal level
	understanding of the	understanding	with occasional	with some errors)	with many errors)	
	algorithms and their	with creativity)	errors)			
	applications.	• /	*			

Applicable to students admitted from Semester A 2022/23 to Summer Term	2024
--	------

Assessment Task	Criterion	Excellent	Good	Marginal	Failure
		(A+, A, A-)	(B+, B)	(B-, C+, C)	(F)
1. Programming	The program the student	The program	The program runs	The program is buggy	The program fails to
Assignments	writes.	produces	correctly but does not	but demonstrates that the	demonstrate that the
0		near-optimal	produce near-optimal	student understands some	student understands any
		results.	results.	basic concepts.	basic concept.
2. Examination	The student demonstrates	High (excellent,	Significant (good	Basic (basic understanding	Not reaching marginal
	comprehensive	detailed	understanding with	with many errors)	level.
	understanding of the	understanding	occasional errors)		
	algorithms and their	with creativity)			
	applications.				

Part III Other Information (more details can be provided separately in the teaching plan)

1. Keyword Syllabus

(An indication of the key topics of the course.)

software for machine learning: scikit-learn, tensorflow, and Google Colab.

general concepts in machine learning: training, validation, and testing datasets; overfitting and underfitting; regularization; data augmentation; gradient descent and stochastic gradient descent.

linear regression, polynomial regression, logistic regression, and softmax regression.

<u>artificial neural networks</u>: activation functions, the vanishing/exploding gradient problem, the loss-function landscape, convolutional neural networks, graph neural networks.

physics-informed neural networks.

<u>unsupervised learning</u>: principal-component analysis, variational autoencoders, generative adversarial networks, diffusion models.

<u>Bayesian machine learning</u>: probability theory and Bayesian statistics, Bayesian neural networks, Hamiltonian Monte Carlo sampling, ensemble learning.

2. Reading List

2.1 Compulsory Readings

(Compulsory readings can include books, book chapters, or journal/magazine articles. There are also collections of e-books, e-journals available from the CityU Library.)

1. Lecture slides.

2.2 Additional Readings

(Additional references for students to learn to expand their knowledge about the subject.)

1.	Hands-on Machine Learning with Scikit-Learn, Keras & Tensorflow, by Aurelien Geron
2.	Physics-informed machine learning, by George Em Karniadakis et. al.
3.	Bayesian Learning via Stochastic Dynamics, by Radford M. Neal
4.	Weight Uncertainty in Neural Networks, by Charles Blundell et. al.