City University of Hong Kong Course Syllabus

offered by College/School/Department of Physics with effect from Semester A 2025/26

Part I Course Overview

Course Title:	Introduction to Quantum Technology
Course Code:	РНҮ5503
Course Duration:	One semester
Credit Units:	3 credits
Level:	P5
Medium of Instruction:	English
Medium of Assessment:	English
Dronoquisitos	
(Course Code and Title)	
Ducauncons	
(Course Code and Title)	
Fauivalant Courses	
(Course Code and Title)	
Evolusiva Courses	
(Course Code and Title)	

Part II Course Details

1. Abstract

The Introduction to Quantum Technology course offers a captivating journey into the fascinating world of quantum mechanics and its ground-breaking applications. This course provides a comprehensive overview of quantum technology's fundamental principles and potential impact. Students will study quantum information science, exploring concepts such as qubits, quantum gates, and entanglement. They will uncover the mysteries of quantum computing, discovering powerful algorithms and the intricacies of quantum error correction. The course also covers quantum communication, cryptography, and secure communication protocols. Moreover, students will explore quantum sensing and metrology, unlocking the potential for precise measurements and imaging. Upon completion, students will possess a solid foundation in quantum technology, empowering them to pursue further studies or careers in this rapidly advancing field that promises to revolutionize industries worldwide.

Course Intended Learning Outcomes (CILOs) 2.

(CILOs state what the student is expected to be able to do at the end of the course according to a given standard of *performance.*)

No.	CILOs	Weighting*	Discov	very-en	riched		
		(if	curricu	ılum rel	ated		
		applicable)	learning outcomes				
			(please	tick	where		
			approp	riate)			
			Al	A2	A3		
1.	Understand various quantum enabled technologies			\checkmark			
2.	Understand Quantum superposition, entanglement			\checkmark			
	measurement						
3.	Understand Qubits and quantum states			\checkmark			
4.	Understand Quantum gates and circuits						
5.	Understand different physical platforms						
6.	Understand Quantum algorithms (e.g., Shor's algorithm,			\checkmark			
	Grover's algorithm)						
7.	Understand Quantum cryptography and secure			\checkmark			
	communication						
8.	Understand Quantum key distribution protocols		\checkmark	\checkmark			
9.	Understand Quantum teleportation and quantum networks			\checkmark			
10.	Understand Quantum-enhanced measurements		\checkmark	\checkmark			
11.	Understand Applications in precision measurement and			\checkmark			
	imaging						
12.	Understand Quantum simulators and their applications			\checkmark			
* If we	eighting is assigned to CILOs, they should add up to 100%.	100%					

If weighting is assigned to CILOs, they should dad up to 100%.

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to self-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

A1:Attitude

LTA	Brief	CI	LO	No.				Hours/week(if						
	Description	1	2	3	4	5	6	7	8	9	10	11	12	applicable)
Lectures	Presentation													3
	of course													
	material													

3. Learning and Teaching Activities (LTAs) (LTAs designed to facilitate students' achievement of the CILOs.)

4. Assessment Tasks/Activities (ATs) (ATs are designed to assess how well the students achieve the CILOs.)

Assessment	CII	LO N	0.									Weighting*	Remarks
Tasks/Activities	1	1 2 3 4 5 6 7 8 9 10 11 12							12				
Continuous Assessme	ent:	70 %	ó										
Assignments	\checkmark		\checkmark					\checkmark	 \checkmark			40%	
Test	\checkmark		\checkmark					\checkmark	 \checkmark			30%	
Examination: _30_%	(dura	ation	2 ho	urs,	if ap	oplic	cable	e)					
* The weightings should	d add	up to	100%	ó.								100%	

Course Syllabus Jun 2024

5. Assessment Rubrics

(Grading of student achievements is based on student performance in assessment tasks/activities with the following rubrics.)

Applicable to students	admitted before Semester	A 2022/23 and in Semester	A 2024/25 & thereafter

Assessment Task	Criterion	Excellent	Good	Fair	Marginal	Failure
		(A+, A, A-)	(B+, B, B-)	(C+, C, C-)	(D)	(F)
1. Tests	The student demonstrates an	High	Significant	Satisfied	Basic	Not reaching
	understanding of the principles	(Outstanding	(Good	(Moderate	(Essential	marginal level
	of quantum physics for solving	achievement and	achievement	achievement	achievement	
	common quantum technology	accurate	with largely	with some	with a basic	
	problems.	understanding)	accurate	accurate	understanding)	
			understanding)	understanding)		
2. Assignments	The student completes all the	High	Significant	Satisfied	Basic	Not reaching
	assignments and demonstrates a good understanding of the	(Outstanding	(Good	(Moderate	(Essential	marginal level
		achievement and	achievement	achievement	achievement	
	taught material by solving the	accurate	with largely	with some	with a basic	
	given problems.	understanding)	accurate	accurate	understanding)	
			understanding)	understanding)		
3. Examination	The student demonstrates an	High	Significant	Satisfied	Basic	Not reaching
	understanding of the principles	(Outstanding	(Good	(Moderate	(Essential	marginal level
	of quantum physics for solving	achievement and	achievement	achievement	achievement	
	common quantum technology	accurate	with largely	with some	with a basic	
	problems.	understanding)	accurate	accurate	understanding)	
			understanding)	understanding)		

Applicable to students admitted in Semester A 2022/23 to Summer Term 2024

Assessment Task	Criterion	Excellent	Good	Marginal	Failure
1. Tests	Capacity for using physics knowledge and theory to solve problems	(A+, A, A-) Will exhibit a high level of competence in understanding, explaining, and integrating the knowledge in written format	Will exhibit a good level of competence in understanding, explaining, and integrating the knowledge in written format	Will exhibit some deficiencies in understanding, explaining, and integrating the knowledge in written format	(F) Will exhibit lack of competence in understanding, explaining, and integrating the knowledge in written format
2. Assignments	Capacity for using physics knowledge and theory to solve problems	Will exhibit a high level of competence in understanding, explaining, and integrating the knowledge in written format	Will exhibit a good level of competence in understanding, explaining, and integrating the knowledge in written format	Will exhibit some deficiencies in understanding, explaining, and integrating the knowledge in written format	Will exhibit lack of competence in understanding, explaining, and integrating the knowledge in written format
3. Examination	Capacity for using physics knowledge and theory to solve problems	Will exhibit a high level of competence in understanding, explaining, and integrating the knowledge in written format	Will exhibit a good level of competence in understanding, explaining, and integrating the knowledge in written format	Will exhibit some deficiencies in understanding, explaining, and integrating the knowledge in written format	Will exhibit lack of competence in understanding, explaining, and integrating the knowledge in written format

Part III Other Information

- 1. Keyword Syllabus
- 2.
- Introduction to Quantum Mechanics Wave-particle duality, uncertainty principle, quantum states, operators, measurement, observables
- Quantum Computing Qubits, quantum gates, quantum algorithms, Grover's algorithm, Shor's algorithm, quantum simulation, optimization, error correction, fault tolerance
- Quantum Communication Quantum key distribution, QKD, quantum teleportation, quantum networks, secure communication, quantum internet
- Quantum Sensing Quantum sensing, quantum metrology, precision measurements
- Technologies Sensing, measuring, imaging, communication, simulation and computing
- Platforms

Superconducting qubits, Trapped ions, photonics, Nuclear magnetic resonance, Quantum dots, Diamond vacancies.

2. Reading List

2.1 Compulsory Readings

(Compulsory readings can include books, book chapters, or journal/magazine articles. There are also collections of e-books, e-journals available from the CityU Library.)

1.	Michael A. Nielsen, Isaac L. Chuang
	Quantum Computation and Quantum Information
	CUP 2010. https://doi.org/10.1017/CBO9780511976667

2.2 Additional Readings

(Additional references for students to learn to expand their knowledge about the subject.)

1. R. Loudon, Quantum Theory of Light, 3rd Edition (Oxford University Press, 2000)