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A B S T R A C T   

A novel terahertz polarization filter based on the anti-resonant fiber is designed and analyzed. 
The polarization extinction ratio (PER) is improved by using high-resistivity silicon (HRS) as the 
bulk material in conjunction with a double conjoined tube cladding structure. The effects of the 
structure and material of the anti-resonant fiber on the polarization filtering characteristics are 
analyzed by the finite element method. The PER of the anti-resonant fiber reaches 100 dB and the 
insertion loss of y-polarization fundamental mode (YPFM) is less than 0.66 dB at 1 THz when the 
anti-resonant fiber length is 5.58 cm. The bandwidth can be expanded by changing the fiber 
length and for a fiber length of 8 cm, the frequency bandwidth is 0.92–1.14 THz and the insertion 
loss is less than 3 dB. The polarization filter is demonstrated to deliver excellent performance in 
the terahertz frequency range and has large commercial potential in terahertz communication 
and biomedical spectroscopy.   

1. Introduction 

Terahertz waves have great potential in non-destructive imaging [1], medical examination [2], security surveillance [3], terahertz 
communication [4], sensing [5], drug detection [6], and military applications [7]. In order to construct a compact structure for remote 
transmission of terahertz waves, several kinds of dielectric waveguides composed of metallic wires [8], dielectric tubes with metal 
coatings [9], sub-wavelength fibers [10], porous fibers [11], photonic bandgap fibers [12], and anti-resonant fibers [13] have been 
proposed. In particular, anti-resonant fibers have received extensive attention due to their outstanding transmission characteristics 
such as small nonlinearity, low transmission loss, negligible dispersion, as well as large bandwidth [14,15]. 

In terahertz communication, terahertz polarization filters can reduce channel scattering and multipath interference during data 
transmission, improve signal quality and reliability [16]. In addition, terahertz also has potential in biomedical spectroscopy. The 
terahertz polarization filters can improve the light coupling efficiency, reduce light intensity loss and image distortion, thus improving 
diagnostic accuracy and therapeutic effect [17]. The high-performance polarization filters require that one of the two orthogonal 
polarization fundamental modes can be transmitted with low loss, while the other modes are suppressed. Y. Hou et al. [18] have 
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reported a terahertz polarization filter based on the hollow core fiber with PTFE showing a loss difference of only 0.036 dB/cm at 
1.675 THz and polarization extinction ratio (PER) of 30 dB for a fiber length of 8.33 m. S. Zhou et al. [19] have adopted the terahertz 
sub-wavelength fiber in designing a polarization filter composed of Topas and PET. The PER is 30 dB within a dozen centimeters and 
the insertion loss of the fundamental mode is less than 4 dB. A. Mollah et al. [14] have proposed a terahertz anti-resonant fiber for the 
polarization filter using Zeonex and the PER is 10 dB at 1 THz. X. Jiang et al. [15] have numerically analyzed a terahertz anti-resonant 
fiber comprising two circular tubes based on Topas. The PER reaches 30 dB for a fiber length of 7.44 cm and the insertion loss is less 
than 2.7 dB at 1 THz. It has been observed that the choice of materials is crucial to the polarization filter design. In the terahertz range, 
the common dielectric waveguide materials include Topas [20], Zeonex [21], PMMA [22], Teflon [23], PTFE [24], PET [25], and HRS 
[26]. The material absorption coefficient of HRS is less than 0.015 cm− 1 in the range of 0.1–1.5 THz thus producing low effective 
material loss. Meanwhile, the refractive index change is only 0.0001 in the range of 0.5–4.5 THz, and it can essentially be regarded as 
having no dispersion [26]. 

Herein, a polarization filter based on the anti-resonant fiber with HRS is designed for the terahertz frequency range, and the effects 
of the structure and material of the anti-resonant fiber on the polarization filtering properties are analyzed. The results show that a PER 
of 100 dB can be achieved when the fiber length is 5.58 cm, and the insertion loss of YPFM is less than 0.66 dB at 1 THz. Compared to 
the previously reported terahertz polarization filter based on the anti-resonant fiber, our proposed structure consisting of a semi- 
circular lattice tube and semi-elliptical lattice tube provides rich design dimension for multi-parameter optimization and effectively 
improves the performance of terahertz polarization filters. 

2. Modeling and analysis 

The anti-resonant fiber is depicted schematically in Fig. 1. The white area represents air and the cladding consists of two conjoined 
lattice tubes with a spacing d of 0.09 mm fixed on the inner wall of the jacket tube. Each conjoined tube is formed by splicing a semi- 
circular lattice tube and semi-elliptical lattice tube. The semi-major axis and semi-minor axis of the outer wall of the semi-elliptical 
tubes are ra and rb, respectively. The inner radius of the jacket tube is R = 0.74 mm. The relationship between R, d, ra, and rb is ra 
= R-d/2-rb, and the wall thickness of the cladding tubes is t = 0.022 mm. The thickness of the jacket tube is JT = 0.1 mm, and the 
thickness of the perfectly matched layer is T = 0.2 mm. The possible manufacturing methods of terahertz anti-resonant fiber include 
stacking [27], extrusion [28] and 3D printing [29]. The stacking method is feasible for the compact cladding tubes structure. The 
proposed anti-resonant fiber has only two cladding tubes that are not well fixed and is not suitable for stacking method. The extrusion 
method is easily to deform the cladding tubes. It is believed that 3D printing method can be used to fabricate our proposed 
anti-resonant fiber in the future. The finite element method (FEM) is used to analyze and optimize the anti-resonant fiber. In order to 
improve the simulation accuracy, an extremely fine mesh size of λ/10 is used in the HRS.The choice of such mesh size provide excellent 
agreement with the Ref [15]. The refractive index of HRS material is set to be a constant of 3.417 in the range of 0.5–4.5 THz due to the 
small refractive index changing rate [26]. 

According to the principle of the hollow core anti-resonant fiber (HC-ARF), the working bandwidth should avoid the resonant 
frequency. Therefore, it is necessary to compute the resonant frequency by Eq. (1) [30,31]: 

fc =
mc

2t
̅̅̅̅̅̅̅̅̅̅̅̅̅
n2 − 1

√ (1)  

where c is the speed of light in free space, m is the resonant order, n is the refractive index of HRS material, t is the wall thickness of the 
cladding tubes. For n = 3.417, m = 1, and t = 0.022 mm, the corresponding resonant frequency fc is 2.08 THz which is away from 
1 THz. 

Fig. 1. Cross-section of the anti-resonant fiber.  
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The filtering characteristics of the polarization filter can be determined using the polarization extinction ratio (PER) as shown in Eq. 
(2) [32,33]: 

PER = 10log10
Pout(M1)
Pout(M2)

(2)  

where Pout(M1) and Pout(M2) represent the output power of mode 1 and mode 2 with equal incident power, which can be calculated by 
Eq. (3) [32,33]: 

Pout = exp( − TL × L ×
ln10
10

) (3)  

where TL is the total loss of a certain mode and L is the fiber length. At the same time, TL× L is known as the insertion loss (IL) of the 
polarization filter. 

The transmission loss of the anti-resonant fiber includes mainly the confinement loss (CL) and effective material loss (EML). The 
confinement loss describes the optical field leakage of the anti-resonant fiber and is determined by the fiber structure and unavoidable 
in theory. The confinement loss can be calculated by Eq. (4) [34,35]: 

CL = 8.686
(

2πf
c

)

Im
(
neff

)
× 10− 2, [dB

/

cm] (4) 

Fig. 2. Transmission characteristics of the anti-resonant fiber made of different materials: (a) Total loss of different modes for Zeonex and HRS, (b) 
Loss difference between the minimum unwanted mode and wanted mode for Zeonex and HRS and (c) Required fiber length for 100 dB PER and 
insertion losses of different fiber lengths. 
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where f is the operating frequency and Im(neff ) is the imaginary part of the effective refractive index. The effective material loss refers 
to the inherent absorption loss of the fiber expressed by Eq. (5) [30,31]: 

EML = 4.34
̅̅̅̅̅ε0

μ0

√
∫

Amat

nαmat|E|2dA

2
∫

All
SzdA

, [dB

/

cm] (5)  

where ε0 and μ0 are the permittivity and permeability in free space, respectively, αmat is the material absorption coefficient of HRS and 
Sz is the z-component of the Poynting vector, which can be expressed as Sz = 1

2 Re(E × H∗)z, where E is the electric field and H is the 
magnetic field. 

2.1. Comparison of different materials 

The effect of the material on the polarization filter is analyzed and compared. For JT = 0.1 mm, t = 0.022 mm, d = 0.09 mm, rb 
= 0.3 mm and R = 0.74 mm, the loss spectra of different modes are shown in Fig. 2(a). As for Zeonex, the anti-resonant fiber can 
support YPFM, XPFM, and higher order mode (HOM) transmission in the range of 0.9–1.3 THz. The electric field diagrams of the three 
modes at 1 THz are shown in the insets of Fig. 2(a). YPFM is well confined in the core region and the electric fields of XPFM and HOM 
leak partially into the cladding region. Therefore, the total loss of YPFM is the lowest, whereas XPFM and HOM have higher losses. 
With regard to HRS, the anti-resonant fiber only supports YPFM and XPFM transmission in the core region. YPFM is confined better in 
the core region by comparing the electric field diagrams of YPFM and XPFM. 

According to Eq. (2), the extinction ratio of the polarization filter depends on the loss difference between the minimum unwanted 
mode and wanted mode. The loss differences for Zeonex and HRS are presented in Fig. 2(b). Compared to Zeonex, HRS has a greater 
loss difference and better polarization extinction performance. 

Eq. (2) and Eq. (3) show that the extinction ratio of the polarization filter is determined by the length of the anti-resonant fiber. 
Fig. 2(c) presents the required fiber length for different frequencies as the PER reaches 100 dB. The required fiber length increases with 
frequencies and the anti-resonant fiber shows a greater loss difference at low frequencies. In the range of 0.9–1.3 THz, the fiber length 
is changed from 4.26 to 12.06 cm. It means that the anti-resonant fiber can achieve an extinction ratio of 100 dB with a shorter fiber 
and the fiber length is 5.58 cm at 1 THz. In the actual polarization filter, the fiber length is fixed. In order to achieve simultaneous 
100 dB PER, wider working bandwidth, and lower insertion loss, Fig. 2(c) exhibits the insertion losses for fiber lengths of 6 cm, 8 cm, 
and 10 cm. The effect of the fiber length on the insertion loss is not substantial but impacts the working bandwidth. Here, the fiber 
length can be tailored to meet the requirement of the operating frequency and insertion loss. For instance, for a fiber length of 8 cm, the 
insertion loss is less than 3 dB and PER is 100 dB in the range of 0.92–1.14 THz. 

2.2. Optimization of the gap spacing d 

For JT = 0.1 mm, t = 0.022 mm, rb = 0.3 mm and R = 0.74 mm, the effect of the gap spacing d on the loss at 1 THz is shown in  
Fig. 3(a). The effective material loss of YPFM and XPFM is very small, and so the total loss is mainly contributed by the confinement 
loss. With increasing d, the total loss of YPFM decreases first and then increases gradually, while the total loss of XPFM increases 
slowly. The total loss of XPFM is bigger than the total loss of YPFM due to stronger coupling between XPFM and cladding modes with 
increasing d [36]. Fig. 3(b) shows the polarization extinction ratio and insertion loss when the fiber length is 5.58 cm. The PER 

Fig. 3. Effect of the gap spacing d on loss, PER, and IL: (a) Confinement loss, effective material loss, total loss of XPFM and YPFM, and loss difference 
between XPFM and YPFM and (b) PER and IL for a fiber length of 5.58 cm. 
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increases with d and meanwhile, the IL decreases initially and then increases. In order to obtain a larger polarization extinction ratio 
and smaller insertion loss at the same time, d = 0.09 mm is selected as the optimal value. 

2.3. Optimization of the outer semi-minor axis rb 

For JT = 0.1 mm, t = 0.022 mm, d = 0.09 mm and R = 0.74 mm, the effect of the outer semi-minor axis rb on the loss at 1 THz is 
displayed in Fig. 4(a). With increasing rb, the total loss of YPFM increases initially and then decreases, and the maximum appears near 
rb = 0.23 mm. It is because the outer semi-minor axis affects the effective refractive index of YPFM. As it approaches the effective 
refractive index of the cladding mode, mode coupling becomes stronger [37,38]. The total loss of XPFM increases monotonically and is 
greater than that of YPFM. The loss difference between the XPFM and YPFM is mainly determined by XPFM, as shown by the orange 
dotted line in Fig. 4(a). The polarization extinction ratio exhibits the same trend with increasing rb as shown in Fig. 4(b). The insertion 
loss is lower as rb is changed from 0.29 mm to 0.34 mm. In order to obtain a better polarization extinction performance and lower 
insertion loss, rb = 0.3 mm is chosen as the optimal value. 

2.4. Optimization of the fiber inner radius R 

The effect of the fiber inner radius R on the properties of the polarization fiber is investigated. For JT = 0.1 mm, t = 0.022 mm, 
d = 0.09 mm and rb = 0.3 mm, the loss at 1 THz for different fiber inner radii are shown in Fig. 5(a). The total losses of YPFM and 
XPFM depend on the confinement losses and decrease monotonically with increasing R. The loss difference almost overlaps the total 
loss of XPFM due to the larger difference between the two polarization fundamental modes. Fig. 5(b) shows the polarization extinction 
ratio and insertion loss when the fiber length is 5.58 cm. The polarization extinction ratio decreases with R, while the insertion loss 
varies in a small range and can be neglected. In order to accomplish a polarization extinction ratio of 100 dB, R = 0.74 mm is selected. 

Based on the above analysis, the optimized parameters of our proposed terahertz polarization filter based on the anti-resonant fiber 
are set as d = 0.09 mm, rb = 0.3 mm and R = 0.74 mm. Therefore, we can achieve a PER of 100 dB and the insertion loss of YPFM is less 
than 0.66 dB at 1 THz when the anti-resonant fiber length is 5.58 cm. As demonstrated in Table 1, the polarization filtering properties 
of our proposed fiber exhibit better performance compared with other existing terahertz fibers. 

3. Fabrication tolerance 

In terahertz communication, fabrication tolerance can affect the performance of terahertz polarization filters and then influence the 
quality and stability of communication system. In addition, the design and tolerance of terahertz polarization filters may influence 
biomedical spectroscopy including imaging resolution and depth, as well as the ability to detect specific tissues and organs. Therefore, 
it is necessary to investigate the effect of fabrication tolerance on the properties of our proposed terahertz polarization filter. Fig. 6(a) 
shows the total loss of YPFM and XPFM if the left tube deviates by 10◦. The asymmetrical structure has little impact on the loss of YPFM 
and XPFM compared to the standard structure and so the difference is negligible. Meanwhile, the wall thickness of the two tubes may 
be different. Fig. 6(b) shows the total loss of YPFM and XPFM when the wall thicknesses of the right and left cladding tubes are t0 
= 0.0215 mm and t = 0.022 mm respectively. Compared to the perfectly symmetrical structure, the deviation in the wall thickness has 
little impact on the loss of YPFM and only slightly affects the loss of XPFM at higher frequencies, but the influence is not substantial. 
Our analysis reveals that minor structural deviations have little effect on the performance of the polarization filter with robust 
transmission characteristics. 

Fig. 4. Effect of the outer semi-minor axis rb on loss, PER, and IL: (a) Confinement loss, effective material loss, total loss of XPFM and YPFM, and loss 
difference between XPFM and YPFM and (b) PER and IL for a fiber length of 5.58 cm. 
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4. Conclusion 

A polarization filter based on the terahertz anti-resonant fiber with high PER is designed and analyzed. HRS is used as the bulk 
material to decrease the effective material loss of the anti-resonant fiber and improve its properties. At 1 THz, the PER is 100 dB, the 
corresponding fiber length is 5.58 cm, and the insertion loss of YPFM is less than 0.66 dB. In addition, the working bandwidth can be 
expanded by increasing the fiber length. The polarization filter with excellent characteristics has large potential in terahertz 
applications. 

Fig. 5. Effect of the fiber inner radius R on loss, PER, and IL: (a) Confinement loss, effective material loss, total loss of XPFM and YPFM, and loss 
difference between XPFM and YPFM and (b) PER and IL for a fiber length of 5.58 cm. 

Table 1 
Comparison between our proposed fiber and other existing terahertz fibers.  

Reference Fiber type Material type LD (dB/cm) PER (dB) Operating 
frequency (THz) 

Ref. [18] HCF PTFE 0.036 30@8.33 m 1.675 
Ref. [19] SWF Topas & PET / 30@6.01–15.44 cm / 
Ref. [14] ARF Zeonex / ~10 1.0 
Ref. [15] ARF Topas 4.03 30@7.44 cm 1.0 
This work ARF HRS 17.91 100@5.58 cm 1.0  

Fig. 6. (a) Transmission characteristics of the anti-resonant fiber when the left tube has a 10◦ deviation with respect to the fiber center and (b) 
Transmission characteristics of the anti-resonant fiber when the left tube has a different wall thickness t0. 
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