City University of Hong Kong Course Syllabus

offered by Department of Advanced Design and Systems Engineering with effect from Semester A 2024 / 25

Part I Course Overview

Course Title:	tle: Systems Modeling and Management						
Course Code:	SYE8202						
Course Duration:	One semester						
Credit Units:	3						
Level:	R8						
Medium of Instruction:	English						
Medium of Assessment:	English						
Prerequisites : (Course Code and Title)	Nil						
Precursors : (Course Code and Title)	Nil						
	SEEM8202 Systems Modeling and Management (offered until 2021/22)						
Equivalent Courses : <i>(Course Code and Title)</i>	ADSE8202 Systems Modeling and Management (offered until 2023/24)						
Exclusive Courses: (Course Code and Title)	Nil						

Part II Course Details

1. Abstract

This course includes the introduction of: 1) simulation models and simulation studies; 2) simulation language (Arena); 3) statistical aspects including input analysis, random variate generation, output analysis, and variance reduction techniques; and 4) simulation optimization techniques.

2. Course Intended Learning Outcomes (CILOs)

No.	CILOs	Weighting		very-em	
		(if	curricu	ılum rel	lated
		applicable)	e) learning outcomes		omes
			Al	A2	A3
1.	Introduce the fundamental concepts and principles in system modelling and simulation.	20%	~	~	
2.	Introduce appropriate simulation language for modelling systems	30%		~	~
3.	Understand basic statistical aspects related to simulation modelling	30%		~	~
4.	Apply methodologies for improving the performance of stochastic systems	20%	~	~	
		100%			

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to self-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

3. Learning and Teaching Activities (LTAs)

LTA	A Brief Description		LO No	э.	Hours/week (if		
		1	2	3	4	5	applicable)
Large Class Activities	Learning through teaching is primarily based on lectures. Mini-lectures and tutorials will be used to facilitate understanding and applications of various concepts and methods.	~	~	~	~	~	26 hrs/ semester
Tutorial Exercises	The homework exercises provide students with the opportunities to familiarize themselves with the methods learnt during the lectures.	~	√	~	✓ ✓	~	21 hrs/ semester

4. Assessment Tasks/Activities (ATs)

Assessment Tasks/Activities	CILO No.				Weighting	Remarks	
	1	2	3	4	5		
Continuous Assessment: <u>40</u> %							
Assignments	✓	✓	\checkmark	✓	✓	40%	
Students are required to effectively							
apply knowledge and skills learned							
from the course in solving some							
simple practical problems.							
Examination: <u>60</u> % (duration:	2 hrs	5	, if a _l	oplica	uble)		
Exam	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	60%	
Students will be assessed via the							
examination their understanding of							
concepts and mastering in skills of							
modelling and problems solving							
learned in class, textbooks and							
reading materials and their ability to							
apply subject-related knowledge.							
						100%	

For a student to pass the course, at least 30% of the maximum mark for the examination should be obtained.

5. Assessment Rubrics

Applicable to students admitted before Semester A 2022/23 and in Semester A 2024/25 & thereafter

Assessment Task	Criterion	Excellent (A+, A, A-)	Good (B+, B, B-)	Fair (C+, C, C-)	Marginal (D)	Failure (F)
1. Assignments	Students' ability to model the systems and systematically analyse them.	High	Significant	Moderate	Basic	Not even reaching marginal levels
2. Final exam	It assesses students' ability to solve different types of simulation problems.	High	Significant	Moderate	Basic	Not even reaching marginal levels

Applicable to students admitted from Semester A 2022/23 to Summer Term 2024

Assessment Task	Criterion	Excellent (A+, A, A-)	Good (B+, B)	Marginal (B-, C+, C)	Failure (F)
1. Assignments	Students' ability to model the systems and systematically analyse them.	Excellent	Good	Marginal	Failure
2. Final exam	It assesses students' ability to solve different types of simulation problems.	Excellent	Good	Marginal	Failure

Part III Other Information

1. **Keyword Syllabus**

- Probability and Statistics
- Arena
- Random Number Generation
- Input Analysis

- Output Analysis
 Output Analysis
 Comparing Systems
 Variance Reduction

Reading List Compulsory Readings

1.	Law, A. M., Simulation Modeling and Analysis, 5th edition, McGraw-Hill Education, New York, 2015.
2.	Kelton, W. D., Sadowski, R. P., and Zupick, N. B., Simulation with Arena, 6 th edition, McGraw-Hill, New York, 2015.

2.2 Additional Readings

NIL