City University of Hong Kong Course Syllabus

offered by Department of Systems Engineering with effect from Semester A 2024 / 25

Part I Course Overview

Course Title:	Forecasting and Control Using Regression, Time Series, and Dynamic Models
Course Code:	SYE8102
Course Duration:	One semester
Credit Units	3
Crean omes.	
Laval	R8
Level.	
Medium of Instruction:	English
Medium of Assessment:	English
D	
Prerequisites : (Course Code and Title)	University level mathematics
(Course Coue and Title)	
Precursors :	University level course in probability and statistics
(Course Code and Tille)	SEEM8102 Forecasting and Control Using Regression, Time Series, and
	Dynamic Models (offered until 2021/22)
Equivalent Courses :	ADSE8102 Forecasting and Control Using Regression, Time Series, and
(Course Code and Title)	Dynamic Models (offered until 2023/24)
Exclusive Courses:	
(Course Code and Title)	Nil

Part II Course Details

1. Abstract

This course aims to educate and to train students and other professionals in business, engineering, mathematics, economics, and statistics, to the principles and the methods for predicting, forecasting, and controlling, using probabilistic and statistical methods. It will start with an overview of methods for quantifying uncertainty, followed by methods of predicting binary outcomes. It will then discuss regression and time series based models, such as autoregressive-moving average processes, for predicting non-binary outcomes. This will be followed by a use of dynamic (or state-space/Kalman Filter) models for prediction and control. Theoretical underpinning will be emphasized and assignments will entail exercises as well as the analysis of data and/or the class participants.

No.	CILOs	Weighting	Discovery-enriched curriculum related			
		(if				
		applicable)	learning outcomes			
			Al	A2	<i>A3</i>	
1.	Quantify uncertainty by probability and statistical	30%	\checkmark	\checkmark		
	methods					
2.	Predict binary exchangeable sequences	20%		\checkmark	\checkmark	
3.	Use regression based models for forecasting	10%		\checkmark	\checkmark	
4.	Use time series based (stochastic process) models for prediction	15%		~	~	
5.	Use dynamic (Kalman Filter) models for prediction and control	5%		~	~	
6.	Communicate orally and in writing, project and	20%				
	results.					
		100%		•		

2. Course Intended Learning Outcomes (CILOs)

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to self-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

3. Learning and Teaching Activities (LTAs)

LTA	Brief Description	CIL	CILO No.			Hours/week (if	
		1	2	3	4	5	applicable)
Lecture	Appreciate Underlying Theory	\checkmark	\checkmark	✓	✓	✓	25 hours/sem
Tutorial	Application of Theory	\checkmark	\checkmark	✓	✓	✓	14 hours/sem

4. Assessment Tasks/Activities (ATs)

Assessment Tasks/Activities	CILO No.						Weighting	Remarks
	1	2	3	4	5	6		
Continuous Assessment: 40 %								
Assignment	\checkmark	✓	\checkmark	✓	✓	\checkmark	40%	
Examination: <u>60</u> % (duration: 2 hours , if applicable)								
							100%	

For a student to pass the course, at least 30% of the maximum mark for the examination should be obtained.

5. Assessment Rubrics

Applicable to students admitted before Semester A 2022/23 and in Semester A 2024/25 & thereafter

Assessment Task	Criterion	Excellent	Good	Fair	Marginal	Failure
		(A+, A, A-)	(B+, B, B-)	(C+, C, C-)	(D)	(F)
1. Assignment	20%	High	Significant	Moderate	Basic	Not even
						reaching
						marginal levels
2. Examination	80%	High	Significant	Moderate	Basic	Not even
						reaching
						marginal levels

Applicable to students admitted from Semester A 2022/23 to Summer Term 2024

Assessment Task	Criterion	Excellent (A+, A, A-)	Good (B+, B)	Marginal (B-, C+, C)	Failure (F)
1. Assignment	20%	Excellent	Good	Marginal	Failure
2. Examination	80%	Excellent	Good	Marginal	Failure

Part III Other Information

1. Keyword Syllabus

Prediction, Forecasting, Kalman Filtering, Control, Stochastic Process, Regression, Time Series analysis.

2. Reading List

2.1 Compulsory Readings

NIL

2.2 Additional Readings

NIL