City University of Hong Kong Course Syllabus

offered by Department of Systems Engineering with effect from Semester A 2024 / 25

Part I Course Overview

Course Title:	Energy Conservation and Management				
Course Code:	SYE6108				
Course Duration:	One Semester				
Credit Units:	3				
Level:	P6				
Medium of Instruction:	English				
Medium of Assessment:	English				
Prerequisites : (Course Code and Title)	Nil				
Precursors : (Course Code and Title)	Nil				
Equivalent Courses: (Course Code and Title)	ADSE6108 Energy Conservation and Management (offered until 2023/24)				
Exclusive Courses: (Course Code and Title)	Nil				

Part II Course Details

1. Abstract

This course aims to: (1) understand the technological, social, economic and environmental factors related to the use of fossil fuels and renewable energy; (2) understand the major energy consumers in buildings, transportation and industrial processes; and (3) identify effective energy conservation and conduct energy audits and management systems.

Topics include: energy sources and environmental impact; energy in buildings; energy-efficient industrial processes; waste heat recovery; energy storage; energy auditing; energy strategies and management.

2. Course Intended Learning Outcomes (CILOs)

(CILOs state what the student is expected to be able to do at the end of the course according to a given standard of performance.)

No.	CILOs	Weighting (if	Discov curricu	very-en ilum re	riched lated
		applicable)	learnin	ng outco	omes
			(please	e tick	where
			approp	oriate)	
			Al	A2	A3
1.	Energy source and its environmental impact	25%	\checkmark	\checkmark	
2.	Energy efficiency, generation, and storage	25%	✓	~	
3.	Energy audits and management	25%	\checkmark	\checkmark	
4	Energy strategies, policy, economics method and analysis	25%	✓	\checkmark	
		100%			

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to real-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

3. Learning and Teaching Activities (LTAs)

(LTAs designed to facilitate students' achievement of the CILOs.)

LTA	Brief Description	CILO No.			Hours/week (if	
	_	1	2	3	4	applicable)
Lecture	Lectures on the topics of the	✓	✓	~	\checkmark	3 hours/week
	keyword syllabus.					
Office Hour	Discussions of course materials	\checkmark	\checkmark	\checkmark	\checkmark	1 hour/week

4. Assessment Tasks/Activities (ATs)

(ATs are designed to assess how well the students achieve the CILOs.)

Assessment Tasks/Activities	nent Tasks/Activities CILO No.				Weighting	Remarks
	1	2	3	4		
Continuous Assessment: <u>30</u> %						
Individual report	\checkmark	\checkmark	\checkmark	\checkmark	30%	
Examination: <u>70</u> % (duration:	2 ho	ours	,	, if app	olicable)	
					100%	

For a student to pass the course, at least 30% of the maximum mark for the examination should be obtained.

5. Assessment Rubrics

(Grading of student achievements is based on student performance in assessment tasks/activities with the following rubrics.)

Assessment Task	Criterion	Excellent (A+, A, A-)	Good (B+, B, B-)	Fair (C+, C, C-)	Marginal (D)	Failure (F)
1. Examination	Apply the knowledge of mathematics, science and engineering to economic energy audit and analysis.	High	Significant	Moderate	Basic	Not even reaching marginal levels
2. Individual report	Understand some of the techniques, skills, and modern trends for energy conservation and management.	High	Significant	Moderate	Basic	Not even reaching marginal levels

Applicable to students admitted before Semester A 2022/23 and in Semester A 2024/25 & thereafter

Applicable to students admitted in Semester A 2022/23 to Summer Term 2024

Assessment Task	Criterion	Excellent	Good	Marginal	Failure
		(A+, A, A-)	(B^+, B)	(B-, C+, C)	(F)
1. Examination	Apply the knowledge of mathematics, science and engineering to economic energy audit and analysis.	High	Significant	Moderate/Basic	Not even reaching marginal levels
2. Individual report	Understand some of the techniques, skills, and modern trends for energy conservation and management.	High	Significant	Moderate/Basic	Not even reaching marginal levels

Part III Other Information (more details can be provided separately in the teaching plan)

1. Keyword Syllabus

(An indication of the key topics of the course.)

- Energy sources and its consumption now and then
- Environmental impact: global warming and climate change
- Energy audits and management in buildings
- Heating, ventilating, air conditioning and lighting technologies
- Energy in major appliances, electric motor system and transportation
- Industrial energy efficiency and energy management
- Waste Heat Recovery and heat Pumps
- Energy generation by low-or zero-C technologies
- Energy storage technologies
- Economics method and analysis
- Energy strategies and management

2. Reading List

2.1 Compulsory Readings

(Compulsory readings can include books, book chapters, or journal/magazine articles. There are also collections of e-books, e-journals available from the CityU Library.)

1.	"Energy Management and Concervation Handbook," CRC press, 2007.
2.	"Energy and the Environment," Wiley, 1999.
3.	"Hankbook of Energy Audits," 5th edition, Fairmont Press, 1998.

2.2 Additional Readings

(Additional references for students to learn to expand their knowledge about the subject.)

NIL