City University of Hong Kong Course Syllabus

offered by Department of Systems Engineering with effect from Semester A 2024 / 25

Part I Course Over	view
Course Title:	Intelligent Manufacturing for Engineering Managers
Course Code:	SYE6106
Course Duration:	One Semester
Credit Units:	3
Level:	_P6
Medium of Instruction:	English
Medium of Assessment:	English
Prerequisites: (Course Code and Title)	Nil
Precursors: (Course Code and Title)	Nil SEEM6106 Intelligent Manufacturing for Engineering Managers (offered until
Equivalent Courses : (Course Code and Title)	2021/22) ADSE6106 Intelligent Manufacturing for Engineering Managers (offered until 2023/24)
Exclusive Courses: (Course Code and Title)	Nil

Part II Course Details

1. Abstract

(A 150-word description about the course)

The objective of this course is to provide engineering managers an overview of technologies associated with smart intelligent manufacturing, such that they can make better decisions when exploring smart manufacturing in their own organizations.

The fourth Industrial revolution has brought enormous changes to the manufacturing industry. This course provides an overview of technologies used in smart manufacturing. We focus on key enabling technologies, such as artificial intelligence, data-driven analysis, internet of things, advanced analytics, intelligent quality control, additive manufacturing and process automation. Some time will also be spent to understand the historical context and the business case associated with smart manufacturing implementation.

2. Course Intended Learning Outcomes (CILOs)

(CILOs state what the student is expected to be able to do at the end of the course according to a given standard of performance.)

No.	CILOs	Weighting*		ery-eni	
		(if		ılum rel	
		applicable)		g outco	
				tick	where
			approp	riate)	1
			Al	A2	A3
1.	Elaborate on Industry 4.0 and how artificial intelligence,				
	internet of things (IoT), information, technology and data				
	are influencing the development of intelligent	10%	✓		
	manufacturing. Understand the historical perspective, from				
	Industry 1.0 to 4.0.				
2.	Understand various technologies that enable intelligent		✓	✓	
	manufacturing. This course focusses on the following				
	technologies:				
	Artificial intelligence				
	 Machine learning and data-driven analysis 	500/			
	 Industrial Internet of things (IIoT) 	50%			
	Advanced analytics				
	 Process automation and Lean 				
	Additive manufacturing				
	Intelligent quality control				
3.	Discuss and assess the technologies and their advantages				
	and drawbacks. And the business case, opportunities and	20%	✓		
	threats associated with advanced manufacturing.				
4.	Apply and analyse, using a selected manufacturing	20%		√	
	technology, a case study of intelligent manufacturing	2070			
* If we	eighting is assigned to CILOs, they should add up to 100%.	100%			•

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to self-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

3. Teaching and Learning Activities (TLAs)

(TLAs designed to facilitate students' achievement of the CILOs.)

TLA	Brief Description	CILO No.					Hours/week (if
		1	2	3	4	5	applicable)
Large class	Weekly lectures. Lectures will be	✓	✓	✓			2 hr / week
activity	supplemented by:						
	- Discussions						
	- Cases						
	- Small group exercises						
	- Guest lectures						
	to facilitate conceptual understanding and						
	introduction to applications.						
Small group	Weekly sessions for discussion of cases,			✓	✓	✓	1 hr / week
laboratory	constructing intelligent						
	manufacturing/Industry 4.0 scheme,						
	applying data analytics and presenting						
	case results.						

4. Assessment Tasks/Activities (ATs)

(ATs are designed to assess how well the students achieve the CILOs.)

Assessment Tasks/Activities	CILO No.					Weighting*	Remarks
	1	2	3	4	5		
Continuous Assessment: <u>50</u> %							
Mid-term test	✓		✓	✓		50%	
Examination: <u>50</u> % (duration:	2 h	ours		, if a _l	plica	ıble)	
* The amaightimes about 1 and 1 to 1000/						1000/	

^{*} The weightings should add up to 100%.

100%

For a student to pass the course, at least 30% of the maximum mark for the examination should be obtained.

5. Assessment Rubrics

(Grading of student achievements is based on student performance in assessment tasks/activities with the following rubrics.)

Applicable to students admitted in Semester A 2022/23 and thereafter

Assessment Task	Criterion	Excellent (A+, A, A-)	Good (B+, B)	Marginal (B-, C+, C)	Failure (F)
Mid-term test	Examination questions are designed to assess student's level of achievement of the intended learning outcomes, with emphasis placed on conceptual understanding, math derivation and correct application.		Good	Marginal	Failure
Final exam	Examination questions are designed to assess student's level of achievement of the intended learning outcomes, with emphasis placed on conceptual understanding and correct application.	Excellent	Good	Marginal	Failure

The test and examination will be numerically-marked and grades-awarded accordingly.

Applicable to students admitted before Semester A 2022/23

Assessment Task	Criterion	Excellent (A+, A, A-)	Good (B+, B, B-)	Fair (C+, C, C-)	Marginal (D)	Failure (F)
Mid-term test	Examination questions are designed to assess student's level of achievement of the intended learning outcomes, with emphasis placed on conceptual understanding, math derivation and correct application.	High	Significant	Moderate	Basic	Not even reaching marginal levels
Final exam	Examination questions are designed to assess student's level of achievement of the intended learning outcomes, with emphasis placed on conceptual understanding and correct application.	High	Significant	Moderate	Basic	Not even reaching marginal levels

The test and examination will be numerically-marked and grades-awarded accordingly.

Part III Other Information (more details can be provided separately in the teaching plan)

1. Keyword Syllabus

(An indication of the key topics of the course.)

- Additive manufacturing
- Advanced analytics
- Artificial intelligence and machine learning
- Data driven process analysis and thinking
- Industry 4.0
- Industrial internet of things (IIoT)
- Intelligent quality control
- Intelligent/smart manufacturing
- Process automation and Lean
- Smart enterprise

2. Reading List

2.1 Compulsory Readings

(Compulsory readings can include books, book chapters, or journal/magazine articles. There are also collections of e-books, e-journals available from the CityU Library.)

1.	Lecture notes and slides
2.	To be announced on canvas
3.	Conway, J. (2016). The Industrial Internet of Things: an evolution to a smart manufacturing
	enterprise. Schneider Electric.
4.	Achillas, C., Tzetzis, D., & Raimondo, M. O. (2017). Alternative production strategies based on
	the comparison of additive and traditional manufacturing technologies. International Journal of
	Production Research, 55(12), 3497-3509.
5.	Gardan, J. (2016). Additive manufacturing technologies: state of the art and trends. International
	Journal of Production Research, 54(10), 3118-3132.
6.	Sanders, A., Elangeswaran, C., & Wulfsberg, J. P. (2016). Industry 4.0 implies lean
	manufacturing: Research activities in industry 4.0 function as enablers for lean
	manufacturing. Journal of Industrial Engineering and Management (JIEM), 9(3), 811-833.

2.2 Additional Readings

(Additional references for students to learn to expand their knowledge about the subject.)

To be announced on canvas