City University of Hong Kong Course Syllabus

offered by School of Energy and Environment with effect from Semester A 2024/25

Part I Course Overview

Course Title:	Electrochemical Energy Storage
Course Code:	SEE6123
Course Duration:	One semester
Course Duration.	
Credit Units:	
Credit Units:	3 credits
Level:	<u>P6</u>
Medium of	
Instruction:	English
Medium of	
Assessment:	English
Prerequisites:	
(Course Code and Title)	Nil
Precursors:	
(Course Code and Title)	Nil
Equivalant Common	
Equivalent Courses : <i>(Course Code and Title)</i>	Nil
Exclusive Courses:	X71
(Course Code and Title)	Nil

Part II Course Details

1. Abstract

This course provides a comprehensive understanding of the fundamentals and applications of electrochemical systems in energy storage and conversion. It explores the mechanisms, design, and optimization of various electrochemical storage devices, including batteries, fuel cells, electrolyzers, and supercapacitors. Emphasis throughout the course is on understanding the underlying electrochemical processes, materials science, and engineering aspects crucial for the development of efficient, sustainable, and economically viable energy storage solutions. The course is designed to provide students with the essential knowledge required for advancing energy storage technologies.

2. Course Intended Learning Outcomes (CILOs)

(CILOs state what the student is expected to be able to do at the end of the course according to a given standard of performance.)

No.	CILOs	Weighting	Discov	•	
		(if	curricu	lum re	lated
		applicable)	learnin	g outco	omes
			(please	e tick	where
			approp	riate)	
			Al	A2	A3
1.	Understand the fundamental principles of electrochemistry	20%			
	relevant to energy storage.				
2.	Analyze the design, operation, and performance metrics of	20%		\checkmark	
	various electrochemical energy storage systems.				
3.	Evaluate the material and component choices for different	20%		\checkmark	
	types of energy storage systems and assess their efficiency,				
	durability, and environmental impact.				
4	Develop skills in interpreting and critiquing current research	20%		\checkmark	\checkmark
	and trends in electrochemical energy storage.				
5	Enhance problem-solving and critical thinking skills within	20%			\checkmark
	the context of electrochemical energy storage challenges.				
		100%			

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

- A2: Ability Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to real-life problems.
- A3: Accomplishments Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

3. Learning and Teaching Activities (LTAs)

(LTAs designed to facilitate students' achievement of the CILOs.)

LTA	Brief Description	CILO No.					Hours/week
	_	1	2	3	4	5	(if applicable)
Lectures		\checkmark		\checkmark		\checkmark	
Tutorials							

4. Assessment Tasks/Activities (ATs)

(ATs are designed to assess how well the students achieve the CILOs.)

Assessment Tasks/Activities	CII	CILO No.				Weighting	Remarks
	1	2	3	4	5		
Continuous Assessment: 100%							
Assignments						20%	
Midterm						40%	
Project Report						40%	
Examination: 0% (duration: , if applicable)							
						100%	

To pass a course, a student must do ALL of the following:

- 1) obtain at least 30% of the total marks allocated towards coursework (combination of assignments, pop quizzes, term paper, lab reports and/ or quiz, if applicable);
- 2) obtain at least 30% of the total marks allocated towards final examination (if applicable); and
- 3) meet the criteria listed in the section on Assessment Rubrics.

5. Assessment Rubrics

(Grading of student achievements is based on student performance in assessment tasks/activities with the following rubrics.)

Assessment Task	Criterion	Excellent (A+, A, A-)	Good (B+, B, B-)	Fair (C+, C, C-)	Marginal (D)	Failure (F)
1. Assignments	Understanding the basic theory and principles of electrochemistry; capable of rationalizing experimental observations using theory and simple calculations	High	Significant	Moderate	Basic	Falling short of even marginal levels
2. Midterm	Understanding basic principles and capable of explaining experimental phenomena and material properties	High	Significant	Moderate	Basic	Falling short of even marginal levels
3. Project Report	Understanding the key problems of energy storage technologies and capable of proposing potential strategies to solve them	High	Significant	Moderate	Basic	Falling short of even marginal levels

Applicable to students admitted before Semester A 2022/23 and in Semester A 2024/25 & thereafter

Applicable to students admitted from Semester A 2022/23 to Summer Term 2024

Assessment	Criterion	Excellent	Good	Fair	Marginal	Failure
Task		(A+, A, A-)	(B+, B, B-)	(C+, C, C-)	(D)	(F)
1. Assignments	Understanding the basic theory and principles of electrochemistry; capable of rationalizing experimental observations using theory and simple calculations	High	Significant	Moderate	Basic	Falling short of even marginal levels
2. Midterm	Understanding basic principles and capable of explaining experimental phenomena and material	High	Significant	Moderate	Basic	Falling short of even marginal levels

	properties					
3. Project Report	Understanding the key problems of energy storage technologies and capable of proposing potential strategies to solve them	High	Significant	Moderate	Basic	Falling short of even marginal levels

Part III Other Information (more details can be provided separately in the teaching plan)

1. Keyword Syllabus

(An indication of the key topics of the course.)

- Electrochemical systems: Fundamentals of electrochemistry, overview of energy storage and conversion.
- Electrochemical principles: electrochemical thermodynamics; kinetics and mechanisms of electrochemical reactions.
- Battery technologies: Principles and types of batteries; lithium-ion batteries; advanced and emerging battery technologies.
- Fuel Cells: Fundamentals and types of fuel cells; electrochemical and materials aspects; applications and challenges.
- Electrolyzers: Principles of electrolysis; hydrogen production and storage; efficiency and optimization.
- Supercapacitors: Basics; materials and performance characteristics; comparison with other storage technologies.
- Applications of electrochemical energy storage: Portable electronics; electric vehicles; grid storage; renewable energy integration.
- Advancements in energy storage technologies: Innovations in materials and processes; challenges and future directions; role in the energy transition.

2. Reading List

2.1 Compulsory Readings

(Compulsory readings can include books, book chapters, or journal/magazine articles. There are also collections of e-books, e-journals available from the CityU Library.)

Nil

2.2 Additional Readings

(Additional references for students to learn to expand their knowledge about the subject.)

1.	Allen J. Bard, et al., "Electrochemical Methods: Fundamentals and Applications", 3rd Edition,
	Wiley, 2022.
2.	Allen J. Bard et al., "Electrochemical Methods: Fundamentals and Applications", 2nd Edition,
	Wiley, 2002.
3.	Cynthia G. Zoski, "Handbook of Electrochemistry", Elsevier, 2007.
4.	Jiujun Zhang, et al., Electrochemical Technologies for Energy Storage and Conversion, Wiley,
	2012.