

City University of Hong Kong Course Syllabus

offered by School of Data Science with effect from Semester A 2024/25

Part I Course Overview

Course Title:	Online Learning and Optimization
Course Code:	SDSC8014
Course Duration:	One semester
Credit Units:	3
Level:	R8
Medium of Instruction:	English
Medium of Assessment:	English
Prerequisites : (Course Code and Title)	Nil
Precursors : (Course Code and Title)	Nil
Equivalent Courses : (Course Code and Title)	Nil
Exclusive Courses: (Course Code and Title)	Nil

Part II Course Details

1. Abstract

This course covers the fundamentals and applications of online learning and optimization. Topics include online learning, online convex optimization, competitive analysis, regret analysis, online gradient descent, and online algorithms. Other selective topics include online optimization with prediction, robust optimization, online stochastic optimization, and online optimization with feedbacks. Applications in online learning and optimization in societal systems in the face of input uncertainty will be used to complement the theoretical developments. Students should know about convex optimization, linear algebra, and calculus.

2. Course Intended Learning Outcomes (CILOs)

No.	CILOs	Weighting	Discov	ery-enr	riched
		(if	curriculum related		
		applicable)	learning outcomes		
			A1	A2	A3
1	Describe the fundamentals of key online optimization	20%	\checkmark		
1.	frameworks				
	Describe the basic theory and solution methodologies	40%	\checkmark		
2.	for online learning and key online optimization				
	approaches				
2	Compare and analyze different online optimization	15%	\checkmark	\checkmark	
5.	approaches				
4	Apply key online optimization frameworks to solve practical	25%	\checkmark	\checkmark	\checkmark
4.	problems				
		100%			

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to self-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

3. Learning and Teaching Activities (LTAs)

LTA	Brief Description	CILO No.					Hours/week
		1	2	3	4	5	(ii applicable)
Lecture	Students will engage in formal lectures to gain knowledge about online learning and optimization	✓ 	~	~	~		30 hours in total
Class-project	The students will identify and tackle practical problems in various engineering systems, ideally with online learning and optimization techniques learned from the course. The students will write a report and give two presentations. This learning activity will be mainly student- led but with the instructor's structural guidance.	×	✓	*	*		9 hours for in-class check-point presentation and final presentation, as well as after- class project activities

4. Assessment Tasks/Activities (ATs)

Assessment Tasks/Activities	CII	LON	0.			Weighting*	Remarks
	1	2	3	4	5		
Continuous Assessment: <u>100</u> %							
Paper Reading	\checkmark	\checkmark	\checkmark				25%
Review reports of selected papers will show how							
well the students can understand the concepts,							
fundamental theory, analysis, solution methods,							
and applications of online learning and							
optimization. This assessment will also train the							
students' ability for critical thinking and carrying							
out scientific reviews for academic works.							
Test	\checkmark	\checkmark	\checkmark	\checkmark			25%
Questions are designed for the first part of the							
course to see how well the students have learned							
the basic concepts, fundamental theory, analysis,							
solution methods, and applications of online							
learning and optimization.							
Mini-Project	\checkmark	\checkmark	\checkmark	\checkmark			25%
The project provides students chances to							
demonstrate how well they have achieved their							
intended learning outcomes.							
Mini-Project Presentation	\checkmark	\checkmark	\checkmark	\checkmark			25%
The project provides students chances to							
demonstrate how well they have achieved their							
intended learning outcomes.							
						100%	

5. Assessment Rubrics

Applicable to students admitted from Semester A 2022/23 to Summer Term 2024

Assessment Task	Criterion	Excellent	Good	Marginal	Failure
		(A+, A, A-)	(B+, B)	(B-, C+, C)	(F)
1. Paper Reading	Ability to understand and the basic concepts, fundamental theory, analysis, solution methods, and applications of online learning and optimization.	High	Significant	Moderate to basic	Not even reaching marginal levels
2. Test	Ability to understand and apply the basic concepts, fundamental theory, analysis, solution methods, and applications of online learning and optimization.	High	Significant	Moderate to basic	Not even reaching marginal levels
3. Mini-Project Report	Ability to demonstrate the understanding of the basic concepts, fundamental theory, analysis, and solution methods of online optimization in practical problems.	High	Significant	Moderate to basic	Not even reaching marginal levels
4.Mini-Project Presentation	Ability to demonstrate how well the intended learning outcomes are achieved.	High	Significant	Moderate to basic	Not even reaching marginal levels

Applicable to students admitted before Semester A 2022/23 and in Semester A 2024/25 & thereafter

Assessment Task	Criterion	Excellent	Good	Fair	Marginal	Failure
		(A+, A, A-)	(B+, B, B-)	(C+, C, C-)	(D)	(F)
1. Paper Reading	Ability to understand and the basic concepts, fundamental theory, analysis, solution methods, and applications of online learning and optimization.	High	Significant	Moderate	Basic	Not even reaching marginal levels
2. Test	Ability to understand and apply the basic concepts, fundamental theory, analysis, solution methods, and applications of online learning and optimization.	High	Significant	Moderate	Basic	Not even reaching marginal levels

3. Mini-Project	Ability to demonstrate the understanding of the	High	Significant	Moderate	Basic	Not even
Report	basic concepts, fundamental theory, analysis, and					reaching
	solution methods of online optimization in					marginal levels
	practical problems.					
4.Mini-Project	Ability to demonstrate how well the intended	High	Significant	Moderate	Basic	Not even
Presentation	learning outcomes are achieved.					reaching
						marginal levels

Part III Other Information (more details can be provided separately in the teaching plan)

1. Keyword Syllabus

Online learning, online optimization, online algorithm, competitive analysis, regret analysis

2. Reading List

2.1 Compulsory Readings

1.	Elad Hazan ((2016),	"Introduction	to	Online	Convex	. Opti	mization",	Found	ations and
	Trends® i	in	Optimization:		Vol.	2:	No.	3-4,	pp	157-325.
	http://dx.doi.or	<u>rg/10.1</u>	561/24000001	3						
	(Selected chap	oters)								
2.	Allan Borodin	and R	an El-Yaniv (20	015), "Onlin	e Comp	utation	n and Com	petitive	Analysis",
	Cambridge Un	niversit	y Press New Yo	ork,	NY, US	А				
	(Selected chap	oters)								

2.2 Additional Readings

1.	Niv Buchbinder and Joseph (Seffi) Naor (2009), "The Design of Competitive Online
	Algorithms via a Primal–Dual Approach", Foundations and Trends® in Theoretical
	Computer Science: Vol. 3: No. 2–3, pp 93-263. http://dx.doi.org/10.1561/0400000024
2.	Shai Shalev-Shwartz (2011), "Online Learning and Online Convex Optimization",
	Foundations and Trends® in Machine Learning, vol 4, no 2, pp 107–194, 2011.
3.	Sébastien Bubeck and Nicolò Cesa-Bianchi (2012), "Regret Analysis of Stochastic and
	Nonstochastic Multi-armed Bandit Problems", Foundations and Trends® in Machine
	Learning: Vol. 5: No. 1, pp 1-122. http://dx.doi.org/10.1561/2200000024