

City University of Hong Kong Course Syllabus

offered by School of Data Science with effect from Semester A 2024/25

Part I Course Overview

Course Title:	Advanced Statistics
Course Code:	SDSC8004
Course Duration:	One Semester
Credit Units:	3
Level:	R8
Medium of Instruction:	English
Medium of Assessment:	English
Prerequisites : (Course Code and Title)	Nil
Precursors : (Course Code and Title)	Nil
Equivalent Courses:	Nil
Exclusive Courses : (Course Code and Title)	Nil

Part II Course Details

1. Abstract

This course aims to provide students with a solid foundation of statistical concepts, theory, and methods including probability theory, statistical estimation and inference methods, and multivariate statistics. It also aims to provide students with a rigorous introduction to the theory and implementation of linear regression models. Emphasis will be placed on rigorous mathematical derivations of the fundamentals of statistics but implementation of the statistical methods via computer programming in MATLAB or R will be an important part of the course as well.

2. Course Intended Learning Outcomes (CILOs)

No.	CILOs	Weighting	Discov	ery-enr	riched
		(if	curricu	lum rel	ated
		applicable)	learnin	g outco	mes
			A1	A2	A3
1	Prove and apply various fundamental results in probability	20%	\checkmark	\checkmark	
1.	theory.	2070			
2	Implement the techniques of parametric inference such as	35%	\checkmark	\checkmark	
2.	maximum likelihood estimation and Bayesian inference.	5570	-		
3.	Derive key results in the theory of linear models and linear	25%	\checkmark	\checkmark	
	model selection.	2370	-	-	
	Derive key results in the theory of nonparametric statistical				
4.	models and methods such as the bootstrap method and	10%	\checkmark	\checkmark	
	Gaussian process regression.				
5	Implement statistical inference methods and modelling	10%	1	~	
5.	methodologies with computer codes.	10%	•	-	
		100%			

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to real-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

3. Learning and Teaching Activities (LTAs)

LTA	Brief Description	CIL	CILO No.			Hours/week (if applicable)	
		1	2	3	4	5	
Lecture	Students will engage in formal lectures to gain knowledge about the theory and methods of advanced statistics.	~	~	~	~	\checkmark	26 hours/semester
Demonstration of computer codes	Students will develop an understanding of the computer codes included in the course materials by following an in-class demonstration and explanation of the codes.	~	~	~	~	~	12 hours/semester

4. Assessment Tasks/Activities (ATs)

Assessment Tasks/Activities	CILO No.					Weighting	Remarks
	1	2	3	4	5		
Continuous Assessment: <u>75</u>	%						
Midterm						25%	
Students will be assessed via							
the midterm their understanding							
of concepts, theory, and	\checkmark	\checkmark	\checkmark	\checkmark			
methods learned in class,							
textbooks, and reading							
materials.							
Two assignments						50%	
Students will work individually							
to derive or prove results in				,			
probability and statistical	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
theory, and apply statistical							
methods to analyse data with							
the help of software.							
Examination: 25 % (duration: 3 h	ours, i	if appl	icable)		T	1
Examination						25%	
Students will be assessed via							
the examination their							
understanding of concepts,	\checkmark	\checkmark	\checkmark	\checkmark			
theory, and methods learned in							
class, textbooks, and reading							
materials.							
						1	1
						100%	J

5. Assessment Rubrics

Applicable to students admitted from Semester A 2022/23 to Summer Term 2024

Assessment Task	Criterion	Excellent	Good	Marginal	Failure
		(A+, A, A-)	(B+, B)	(B-, C+, C)	(F)
1. Midterm exam		High	Moderate	Basic	Not even reaching
	Midterm exam to assess students'	-			marginal levels
	level of achievement of CILOs 1-4				C
	on material covered before the				
	midterm exam.				
2. Assignments	Assignments are designed to assess	High	Moderate	Basic	Not even reaching
-	student's level of achievement of	-			marginal levels
	CILOs 1-5.				-
3. Examination	Examination questions are designed	High	Moderate	Basic	Not even reaching
	to assess student's level of	-			marginal levels
	achievement of CILOs 1-4 on all				-
	material covered. Students will				
	need to demonstrate understanding				
	of various elements of statistical				
	theory and methods taught in the				
	course through precise				
	mathematical exposition.				

Applicable to students admitted before Semester A 2022/23 and in Semester A 2024/25 & thereafter

Assessment Task	Criterion	Excellent	Good	Fair	Marginal	Failure
		(A+, A, A-)	(B+, B, B-)	(C+, C, C-)	(D)	(F)
1. Midterm exam	Midterm exam to assess students'	High	Significant	Moderate	Basic	Not even
	level of achievement of CILOs	-				reaching
	1-4 on material covered before the					marginal levels
	midterm exam.					_
2. Assignments	Assignments are designed to	High	Significant	Moderate	Basic	Not even
_	assess student's level of	-				reaching
	achievement of CILOs 1-5.					marginal levels
3. Examination	Examination questions are	High	Significant	Moderate	Basic	Not even
	designed to assess student's level					reaching
	of achievement of CILOs 1-4 on					marginal levels

all material covered. Students will			
need to demonstrate			
understanding of various elements			
of statistical theory and methods			
taught in the course through			
precise mathematical exposition.			

Part III Other Information (more details can be provided separately in the teaching plan)

1. Keyword Syllabus

• Probability theory and distributions (probability space, random variables, expectation, inequalities, and convergence of random variables)

• Parametric statistical inference theory and methods (maximum likelihood estimation, Fisher's scoring, Fisher information, consistency and limiting distribution of maximum likelihood estimators, statistical decision theory, Rao-Blackwell theorem, minimum variance unbiased estimation, Bayesian inference)

• Multivariate statistics (covariance matrix estimation, James-Stein estimator, principle components analysis), linear model theory (least squares, Gauss Markov theorem, ridge regression, leave-one-out cross validation, optimal design of experiments), variable selection methods (Bayesian information criterion, LASSO, LARS).

• Nonparametric statistical models and methods (bootstrap, Gaussian process models, local polynomial regression, kernel methods)

2. Reading List

2.1 Compulsory Readings

1.	Wasserman, L. (2013). All of statistics: a concise course in statistical inference. Springer
	Science & Business Media.
2.	Keener, R. W. (2011). Theoretical statistics: Topics for a core course. Springer.
3.	Resnick, S. I. (2013). A probability path. Springer Science & Business Media.
4.	Casella, G., & Berger, R. L. (2002). Statistical inference (Vol. 2). Pacific Grove, CA:
	Duxbury.
5.	Rasmussen, C. E., & Williams, C. K. (2006). Gaussian Process Regression for Machine
	Learning. The MIT Press

2.2 Additional Readings

NIL