

City University of Hong Kong Course Syllabus

offered by School of Data Science with effect from Semester A 2024/25

Part I Course Overview

Course Title:	Machine Learning
Course Coole	SDSC2002
Course Code:	SDSC8003
Course Duration:	One Semester
Credit Units:	3
Level:	R8
Medium of Instruction:	English
Medium of Assessment:	English
Prerequisites : (Course Code and Title)	Nil
Precursors : (Course Code and Title)	Nil
Equivalent Courses: (Course Code and Title)	Nil
Exclusive Courses : (Course Code and Title)	Nil

Part II Course Details

1. Abstract

This course focuses on machine learning models and their deployments. Topics include neural networks (principles, optimization, generalization), recent neural network models (convolutional, self-attention, transformers, generative adversarial networks), and system issues in machine learning(on-device machine learning, federated learning).

2. Course Intended Learning Outcomes (CILOs)

No.	CILOs	Weighting	Discov	very-eni	riched
		(if	curricu	ılum rel	lated
		applicable)	learnin	learning outcomes	
			A1	A2	A3
1.	Identify and describe the fundamental principles, ideas, and	20%	\checkmark		
	theories of machine learning and deep learning				
2.	Compare and explain recent machine learning and deep	20%	\checkmark		
	learning models and algorithms				
3.	Apply existing machine learning models and design new	30%	\checkmark	\checkmark	\checkmark
	algorithms to practical datasets				
4.	Identify and discuss practices to deploy machine learning	30%	\checkmark	\checkmark	\checkmark
	models to systems				
		100%			

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to self-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

3. Learning and Teaching Activities (LTAs)

LTA	Brief Description	CILO No.		Hours/week (if		
		1	2	3	4	applicable)
Lecture	Students will engage in formal lectures to gain knowledge about the principles, algorithms, and practices of recent machine learning and deep learning methods.	~	V	~	~	39 hours in total
Group Projects	Students will participate in groups to design machine learning models for real-world datasets, present their research related to machine learning, and assess the presentation of peers.	~	V	~	~	After classes; presentations in class in the last week

4. Assessment Tasks/Activities (ATs)

Assessment Tasks/Activities	CILO No.				Weighting	Remarks	
	1	2	3	4			
Continuous Assessment: _70_%							
Programming Test	\checkmark	\checkmark	\checkmark		35%	Group projects	
Open-book Python							
programming test to assess							
students' ability to apply and							
design							
machine learning methods on							
given real-world datasets							
Research Presentation	\checkmark	\checkmark		\checkmark	35%	Group projects	
Group research to demonstrate							
the students' ability to							
formulate research questions							
and design preliminary							
solutions on topics related to							
machine learning models and							
systems							
Examination: <u>30</u> % (duration	n: 2 h	ours	, if	applica	able)	T	
Examination	\checkmark	\checkmark	\checkmark	\checkmark	30%		
Questions are designed to see							
how well the students have							
learned the basic concepts,							
fundamental theory, and							
applications of learning							
algorithms.							
					100%		

5. Assessment Rubrics

Applicable to students admitted from Semester A 2022/23 to Summer Term 2024

Assessment Task	Criterion	Excellent	Good	Marginal	Failure
		(A+, A, A-)	(B+, B)	(B-, C+, C)	(F)
1. Programming	Ability to learn the basic	High	Moderate	Basic	Not even reaching
Test	concepts, apply methods and				marginal level
	algorithms of machine learning.				C
2. Research	Ability to conduct and	High	Moderate	Basic	Not even reaching
Presentation	demonstrate research on machine				marginal level
	learning models and systems.				e
3. Examination	Ability to solve learning tasks	High	Moderate	Basic	Not even reaching
	using machine learning methods.				marginal level

Applicable to students admitted before Semester A 2022/23 and in Semester A 2024/25 & thereafter

Assessment Task	Criterion	Excellent	Good	Fair	Marginal	Failure	
		(A+, A, A-)	(B+, B, B-)	(C+, C, C-)	(D)	(F)	
1. Programming Test	Ability to learn the basic concepts, apply methods and algorithms of machine learning.	High	Significant	Moderate	Basic	Not e reaching marginal leve	even el
2.Research Presentation	Ability to conduct and demonstrate research on machine learning models and systems.	High	Significant	Moderate	Basic	Not e reaching marginal leve	even el
3. Examination	Ability to solve learning tasks using machine learning methods.	High	Significant	Moderate	Basic	Not e reaching marginal leve	even el

Part III Other Information (more details can be provided separately in the teaching plan)

1. Keyword Syllabus

Neural networks, generalization, convolutional neural networks, self-attention, transformers, generative adversarial networks, on-device machine learning, and federated learning.

2. Reading List

2.1 Compulsory Readings

1	Lesterne all'des
1.	Lecture sindes

2.2 Additional Readings

1.	I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning, MIT Press, 2016.
2.	The Elements of Statistical Learning, by Hastie, Tibshirani, Friedman, Springer 2001