City University of Hong Kong Course Syllabus

offered by School of Data Science with effect from Semester A 2024/25

Part I Course Overview

Course Title:	Optimization for Data Science
Course Code:	SDSC6011
Course Duration:	One Semester
Credit Units:	3
Level:	P6
Medium of Instruction:	English
Medium of Assessment:	English
Prerequisites : (Course Code and Title)	Nil
Precursors : (Course Code and Title)	Nil
Equivalent Courses: (Course Code and Title)	Nil
Exclusive Courses: (Course Code and Title)	Nil

Part II Course Details

1. Abstract

This course offers an introduction to optimization methods with applications in data science. A basic understanding of Calculus and Linear Algebra are assumed. We will introduce the theoretical foundation and the fundamental algorithms for optimization and advanced optimization methods for practical problems arising in data science and machine learning applications. Course content includes convex analysis, Lagrangian duality theory, linear and nonlinear programming, conic programming, etc.

2. Course Intended Learning Outcomes (CILOs)

(CILOs state what the student is expected to be able to do at the end of the course according to a given standard of performance.)

No.	CILOs	Weighting	Discov	very-en	riched
		(if	curricu	ilum rel	lated
		applicable)	learnin	ng outco	omes
			(please	tick	where
			approp	oriate)	
			Al	A2	A3
1.	Explain methodologies and the underlying mathematical	20%	~	~	
	structures in optimization				
2.	Apply basic concepts of mathematics to formulate an	25%	~	~	
	optimization problem				
3.	Derive optimal solutions for optimization models	25%	~	~	
4.	Apply commonly used optimization algorithms	20%	~	~	
5.	Implement optimization programs to solve practical	10%	~	✓	~
	problems				
		100%			

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to self-life problems.

A3: Accomplishments Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

3.

Learning and Teaching Activities (LTAs) (*LTAs designed to facilitate students' achievement of the CILOs.*)

LTA	Brief Description	CIL	CILO No.			Hours/week (if		
		1	2	3	4	5		applicable)
Lecture	Students will gain knowledge	\checkmark	\checkmark	\checkmark	✓			39
	points of optimization methods							hours/semester
	covered in this course							

4. Assessment Tasks/Activities (ATs)

(ATs are designed to assess how well the students achieve the CILOs.)

Assessment Tasks/Activities	CILO No.						Weighting	Remarks
	1	2	3	4	5			
Continuous Assessment: <u>60</u>	%							
Test		~	<	~	✓		40%	
Assignments	~	~	<	~			20%	
Examination: <u>40</u> % (durati	on:	2 h	ours	,	if ap	olical	ble)	
Examination	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		40%	
							100%	

5. Assessment Rubrics

(Grading of student achievements is based on student performance in assessment tasks/activities with the following rubrics.)

Assessment Task Criterion Excellent Good Fair Marginal Failure (A+, A, A-) (B+, B, B-) (C+, C, C-) (D) (F) 1. Test 40% Basic Not even reaching High Significant Moderate marginal levels 20% Not even reaching 2. Assignments High Significant Moderate Basic marginal levels 3. Examination 40% High Significant Basic Not even reaching Moderate marginal levels

Applicable to students admitted before Semester A 2022/23 and in Semester A 2024/25 & thereafter

Applicable to students admitted from Semester A 2022/23 to Summer Term 2024

Assessment Task	Criterion	Excellent (A+, A, A-)	Good (B+, B)	Marginal (B-, C+, C)	Failure (F)
1. Test	40%	High	Significant	Moderate/basic	Not even reaching marginal levels
2. Assignments	20%	High	Significant	Moderate/basic	Not even reaching marginal levels
3. Examination	40%	High	Significant	Moderate/basic	Not even reaching marginal levels

Part III Other Information (more details can be provided separately in the teaching plan)

1. Keyword Syllabus

(An indication of the key topics of the course.)

- Convex analysis
- Lagrangian duality theory
- Linear and conic programming
- Nonlinear programming
- Gradient descent, subgradient descent, proximal gradient descent
- Barrier methods
- Interior-point methods

2. Reading List

2.1 Compulsory Readings

(Compulsory readings can include books, book chapters, or journal/magazine articles. There are also collections of e-books, e-journals available from the CityU Library.)

1.	Convex Optimization (3rd edition), Stephen Boyd and Lieven Vandenberghe © 2004
	Cambridge University Press.
2.	Lecture Notes

2.2 Additional Readings

(Additional references for students to learn to expand their knowledge about the subject.)

1.	Lectures on Modern Convex Optimization: Analysis, Algorithms, and Engineering
	Applications, Aharon Ben-Tal, Arkadi Nemirovski, © 2001, SIAM Press.
2	Linear and Nonlinear Programming (3rd edition), David G. Luenberger and Yinyu Ye
	© 2008 Springer