City University of Hong Kong Course Syllabus

offered by Department of Physics with effect from Semester A 2024/25

Part I Course Overview

Course Title:	Special Topics in Physics
Course Code:	PHY8273
Course Duration:	One Semester
Credit Units:	3
Level:	R8
Medium of Instruction:	English
Medium of Assessment:	English
Prerequisites: (Course Code and Title)	Nil
Precursors: (Course Code and Title)	Nil
Equivalent Courses : (Course Code and Title)	Nil
Exclusive Courses: (Course Code and Title)	Nil

1

Part II Course Details

1. Abstract

This is an advanced course on a contemporary topic in Pure and/or Applied Physics. The topic will be announced in advance when this course is offered. It will provide a useful supplement to the advanced courses already specified in the programme and to motivate the students for discovery and innovation.

2. Course Intended Learning Outcomes (CILOs)

No.	CILOs	Weighting (if applicable)	Discovery-enriched curriculum related learning outcomes			
		7	Al	A2	A3	
1.	Be aware of the current development in selected areas	20	$\sqrt{}$	\checkmark	$\sqrt{}$	
	in Physics.					
2.	Relate the covered progress to fundamental principles	30	√	\checkmark	V	
	in Physics.					
3.	Apply some of the current development in new and	30	√	\checkmark	√	
	useful applications.					
4	Identify state-of-the-art developments in the relevant	20	√	1	√	
	area and to form opinions on specific issues, and					
	participate in discovery and innovation.					
		100%				

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to real-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

3. Learning and Teaching Activities (LTAs)

LTA	Brief Description	CILO No.						Hours/week
		1	2	3	4			(if applicable)
1	Lecture	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$		26/semester	1	Lecture
2	Tutorial	V	V	$\sqrt{}$	V	13/semester	2	Tutorial

4. Assessment Tasks/Activities (ATs)

Assessment Tasks/Activities	CILO No.						Weighting	Remarks
	1	2	3	4				
Continuous Assessment: 100%								
Written reports							80%	
Oral presentations				$\sqrt{}$			20%	
Examination: 0%								

100%

5. Assessment Rubrics

Applicable to students admitted before Semester A 2022/23 and in Semester A 2024/25 & thereafter

Assessment Task	Criterion	Excellent	Good	Fair	Marginal	Failure
		(A+, A, A-)	(B+, B, B-)	(C+, C, C-)	(D)	(F)
1. Written reports	The student can thoroughly identify and explain how the principles are applied to science and technology for solving physics and engineering problems.	High	Significant	Moderate	Basic	Not reaching marginal level
2. Oral presentations	The student can thoroughly identify and explain how the principles are applied to science and technology for solving physics and engineering problems.	High	Significant	Moderate	Basic	Not reaching marginal level

Applicable to students admitted from Semester A 2022/23 to Summer Term 2024

Assessment Task	Criterion	Excellent	Good	Marginal	Failure
		(A+, A, A-)	(B+, B)	(B-, C+, C)	(F)
1. Written reports	The student can thoroughly	High	Moderate	Basic	Not reaching marginal
	identify and explain how the				level
	principles are applied to				
	science and technology for				
	solving physics and				
	engineering problems.				
2. Oral	The student can thoroughly	High	Moderate	Basic	Not reaching marginal
presentations	identify and explain how the				level
	principles are applied to				
	science and technology for				
	solving physics and				
	engineering problems.				

Part III Other Information

Keyword Syllabus 1.

To be specified once the topic is fixed.

- 2.
- Reading List Compulsory Readings 2.1

2.2 Additional Readings

To be specified.