City University of Hong Kong Course Syllabus

offered by Department of Physics with effect from Semester B 2023/24

Part I Course Overview

Course Title:	Introduction to Quantum Information
Course Code:	РНУ6603
Course Duration:	One semester
Credit Units:	3 credits
Level:	P6
Medium of Instruction:	English
	8
Medium of Assessment:	English
	(1) PHY3205 Electrodynamics or equivalent AND
Prerequisites : <i>(Course Code and Title)</i>	(2) PHY3251 Quantum Mechanics or equivalent
Precursors : <i>(Course Code and Title)</i>	Nil
(Course Code and Tille)	
Equivalent Courses:	Nil
(Course Code and Title)	
Exclusive Courses:	PHY8603 Introduction to Quantum Information
(Course Code and Title)	

Part II Course Details

1. Abstract

Quantum information science extends classical information science such as computation and communication to the physical regime of quantum superposition. This course aims to bring the students up to the level of being able to access the research literature in the field. Firstly, the key theoretical formalism is described, including how to model states, measurements and dynamics. A tour of some key insights concerning the use of quantum superposition and entanglement as resources for information science tasks follows. The course then focusses on physical realisations via quantum optics, including how to create and manipulate quantum superposition and entanglement using lasers and optical elements. The course then describes information theory and quantum computation theoretically followed by how to implement quantum information protocols physically with quantum-optical processes.

2. Course Intended Learning Outcomes (CILOs)

(CILOs state what the student is expected to be able to do at the end of the course according to a given standard of performance.)

No.	CILOs	Weighting		very-em	
		(if	curricu	lum re	lated
		applicable)	learnir	ig outco	omes
			(please	e tick	where
			approp	riate)	
			Al	A2	A3
1.	Understand how to model states and measurements (Dirac		\checkmark	J	
	notation, Born rule, mixed states, quantum interference,				
	generalised measurements).				
2.	Understand how to model dynamics (unitary dynamics,		\checkmark	J	
	measurement update rules, some open systems).				
3.	Understand key theoretical protocols in quantum		\checkmark	1	
	information science (teleportation, communication over				
	quantum channels, quantum key distribution).				
4.	Understand how to model quantum EM fields as in quantum		\checkmark	\checkmark	
	optics, including number states and phase-space				
	representations.				
5.	Understand multi-photon interference and photon counting		\checkmark	V	
	techniques.				
6.	Understand quantum interference as observed in quantum		1	V	
	optical experiments, in particular the Hong-Ou-Mandel				
	effect.				
7.	Understand homodyne detection techniques for continuous				
	variables and how it relates to quantum noise.				
8.	Understand entropy as a method to quantify information		1	V	
	(classical entropy, quantum entropy, information				
	compression, mutual information and channel capacity).				
9.	Understand essential idea of quantum computation		\checkmark	V	
	(Quantum search and hidden subgroup algorithms).				
10.	Quantum optical implementation of quantum computing.		\checkmark	J	
		100%		•	•

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to self-life problems.

A3: Accomplishments Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

3.

Teaching and Learning Activities (TLAs) (TLAs designed to facilitate students' achievement of the CILOs.)

TLA	Brief Description	CI	CILO No.						Hours/week			
		1	2	3	4	5	6	7	8	9	10	(if applicable)
Lectures	Presentation of course material	1	1	V	V	V	\checkmark	\checkmark	1	1	1	3hrs

4. Assessment Tasks/Activities (ATs) (ATs are designed to assess how well the students achieve the CILOs.)

Assessment	CI	LO]	No.					Weighting	Remarks			
Tasks/Activities	1	2	3	4	5	6	7	8	9	10		
Continuous Assessment: 70%												
Tests											30%	
Assignments											40%	
Final Examination: 30% (duration: 2 hours)												

100%

5. Assessment Rubrics

(Grading of student achievements is based on student performance in assessment tasks/activities with the following rubrics.)

Applicable to students admitted in Semester A 2022/23 and thereafter

Assessment Task	Criterion	Excellent	Good	Marginal	Failure
		(A+, A, A-)	(B+, B)	(B-, C+, C)	(F)
1. Tests	Capacity for using physics	Will exhibit a high level of	Will exhibit a good	Will exhibit some	Will exhibit lack of
	knowledge and theory to	competence in	level of competence in	deficiencies in	competence in
	solve problems	understanding, explaining,	understanding,	understanding,	understanding,
		and integrating the	explaining, and	explaining, and	explaining, and
		knowledge in written format	integrating the	integrating the	integrating the
			knowledge in written	knowledge in written	knowledge in written
			format	format	format
2. Assignments	Capacity for using physics	Will exhibit a high level of	Will exhibit a good	Will exhibit some	Will exhibit lack of
	knowledge and theory to	competence in	level of competence in	deficiencies in	competence in
	solve problems	understanding, explaining,	understanding,	understanding about	understanding,
		and integrating the	explaining, and	experimental methods	explaining, and
		knowledge in written format	integrating the	and the interpretation of	integrating the
			knowledge in written	results	knowledge in written
			format		format
3. Examination	Capacity for using physics	Will exhibit a high level of	Will exhibit a good	Will exhibit some	Will exhibit lack of
	knowledge and theory to	competence in	level of competence in	deficiencies in	competence in
	solve	understanding, explaining,	understanding,	understanding,	understanding,
	problems	and integrating the	explaining, and	explaining, and	explaining, and
		knowledge in written format	integrating the	integrating the	integrating the
			knowledge in written	knowledge in written	knowledge in written
			format	format	format

Applicable to students admitted before Semester A 2022/23

Assessment	Criterion	Excellent	Good	Fair	Marginal	Failure
Task		(A+, A, A-)	(B+, B, B-)	(C+, C, C-)	(D)	(F)
1. Tests	Capacity for using	Will exhibit a high	Will exhibit a good	Will exhibit some	Will exhibit some	Will exhibit lack of
	physics knowledge	level of competence in	level of competence	deficiencies in	deficiencies in	competence in
	and theory to solve	understanding,	in understanding,	understanding,	understanding,	understanding,
	problems	explaining, and	explaining, and	explaining, and	explaining, and	explaining, and
		integrating the	integrating the	integrating the	integrating the	integrating the
		knowledge in written	knowledge in written	knowledge in written	knowledge in	knowledge in written
		format	format	format	written format	format
2.	Capacity for using	Will exhibit a high	Will exhibit a good	Will exhibit some	Will exhibit some	Will exhibit lack of
Assignments	physics knowledge	level of competence in	level of competence	deficiencies in	deficiencies in	competence in
	and theory to solve	understanding,	in understanding,	understanding about	understanding	understanding,
	problems	explaining, and	explaining, and	experimental	about	explaining, and
		integrating the	integrating the	methods and the	experimental	integrating the
		knowledge in written	knowledge in written	interpretation of	methods and the	knowledge in written
		format	format	results	interpretation of	format
					results	
3.	Capacity for using	Will exhibit a high	Will exhibit a good	Will exhibit some	Will exhibit some	Will exhibit lack of
Examination	physics knowledge	level of competence in	level of competence	deficiencies in	deficiencies in	competence in
	and theory to solve	understanding,	in understanding,	understanding,	understanding,	understanding,
	problems	explaining, and	explaining, and	explaining, and	explaining, and	explaining, and
		integrating the	integrating the	integrating the	integrating the	integrating the
		knowledge in written	knowledge in written	knowledge in written	knowledge in	knowledge in written
		format	format	format	written format	format

Part III Other Information

1. Keyword Syllabus

1. States and measurements (Dirac notation, Born rule, mixed states, quantum interference, generalised measurements).

2. Dynamics (unitary dynamics, measurement update rules, some open systems).

3. Key theoretical protocols in quantum information science (teleportation, communication over quantum channels, quantum key distribution).

4. Quantum optics theory for light, including mode description of EM fields and their quantization, quantum states for optical fields – photon number states, squeezed states, entangled states, and more general Glauber-Sudarshan P-representation of quantum states.

5. Photon counting technique for discrete variables - multi-photon interference

6. Homodyne detection technique for continuous variables - quantum noise

7. Linear and nonlinear interactions for the generation and manipulation of quantum states 8. Entropy as a method to quantify information (classical entropy, quantum entropy, information compression, mutual information and channel capacity).

9. Quantum computation (Quantum search and hidden subgroup algorithms).

10. Quantum optical implementation of quantum information protocols.

2. Reading List

2.1 Compulsory Readings

(Compulsory readings can include books, book chapters, or journal/magazine articles. There are also collections of e-books, e-journals available from the CityU Library.)

1	•	Michael A. Nielsen, Isaac L. Chuang
		Quantum Computation and Quantum Information
		CUP 2010. https://doi.org/10.1017/CBO9780511976667
2	•	Zheyu Jeff Ou, Quantum Optics for Experimentalists, 1st Edition (WSPC, 2017)

2.2 Additional Readings

(Additional references for students to learn to expand their knowledge about the subject.)

1.	Caltech, Course Information for Physics 219/Computer Science 219
	Quantum Computation: theory.caltech.edu/~preskill/ph229/
2.	R. Loudon, Quantum Theory of Light, 3rd Edition (Oxford University Press, 2000)