City University of Hong Kong Course Syllabus

offered by Department of Physics with effect from Semester A 2022/23

Part I Course Overview	\mathbf{v}
Course Title:	Advanced Instrumentation and Measurement Methods for Experimental Physics
Course Code:	PHY6501
Course Duration:	One Semester
Credit Units:	3
Level:	P6
Medium of Instruction:	English
Medium of Assessment:	English
Prerequisites: (Course Code and Title)	Nil
Precursors: (Course Code and Title)	Nil
Equivalent Courses : (Course Code and Title)	Nil
Exclusive Courses: (Course Code and Title)	PHY8401 Advanced Instrumentation and Measurement Methods for Experimental Physics

Part II Course Details

1. Abstract

The goal of the Advanced Instrumentation and Measurement course is to expand the student knowledge of experimental physics research beyond the basic knowledge with a focus on modern instrumentation and experiments, particularly in with respect to scattering techniques as well as use of large-scale facilities. In particular, this course focuses on neutron and X-ray sources such as synchrotrons and covers both diffraction and inelastic scattering.

2. Course Intended Learning Outcomes (CILOs)

(CILOs state what the student is expected to be able to do at the end of the course according to a given standard of performance.)

No.	CILOs	Weighting (if applicable)	curricu learnir	very-emulum related outcome tick priate)	lated omes
			AI	A2	A3
1.	Acquire in-depth knowledge about different scattering techniques with emphasis on neutron and X-ray techniques.	25		/	
2.	Be able to operate analytical instruments and employ measurement methods. Understand the limitations and compromises of the instruments and methods.	25	~	~	
3.	Describe the principles, operations, and structure of large-scale, shared facilities.	25	~		
4.	Observe specific case-studies for better understanding the practical applications.	25	~		~
		100%			

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to self-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

3. Teaching and Learning Activities (TLAs) (TLAs designed to facilitate students' achievement of the CILOs.)

TLA	Brief Description	CIL	CILO No.			Hours/week (if	
		1	2	3	4		applicable)
Lecture	Explain key concepts and theory of topics of the course	~	~	-			2
Tutorial	Explain how some problems are solved and the techniques used.	~	~	~	'		1
Project	Hands-on experience with analysis of real-world data.	~	'	'	~		1

4. Assessment Tasks/Activities (ATs) (ATs are designed to assess how well the students achieve the CILOs.)

Assessment Tasks/Activities	CILO No.			Weighting	Remarks	
	1	2	3	4		
Continuous Assessment: 75%						
Assignments	1	1	/	1	50%	Bi-weekly assignments
Term Paper	1	1	/	1	25%	
Examination: 25% (duration:	1	/	/	/	25%	
2hrs)						
					100%	

5. Assessment Rubrics

(Grading of student achievements is based on student performance in assessment tasks/activities with the following rubrics.)

Applicable to students admitted in Semester A 2022/23 and thereafter

Assessment Task	Criterion	Excellent	Good	Marginal	Failure
		(A+, A, A-)	(B+, B)	(B-, C+, C)	(F)
1. Assignments	1. Demonstrate	Student completes all	Student completes at least	Student completes at least	Student completes less
	Correct understanding of	assignments, and	80% of assignments, and	65% of assignments, and	than 50% of assignments.
	key concepts.	demonstrates excellent	demonstrates	shows some of the	Or, fails to accurately
	2.Expand on learned concepts via		understanding of the	scientific principles	describe the scientific
	self-learning.	scientific principles	scientific principles	governing the behaviour.	principles governing the
		governing the behaviour.	governing the behaviour.	Student is able to	behaviour.
		Student is able to	Student is generally able	communicate ideas via text	
		communicate ideas	to communicate ideas via	and visual aids accurately	
		effectively and clearly via	text and visual aids.	but in a simple manner.	
		text and visual aids.			
2. Term paper	1. Demonstrate	Demonstrates excellent	Demonstrates	Shows some of the	Fails to accurately describe
	Correct understanding of	understanding of the	understanding of the	scientific principles	the scientific principles.
	key concepts.	scientific principles	scientific principles	governing the behaviour.	Student's work shows
	2. Expand on learned concepts via	-	governing the behaviour.	Student is able to	evidence of plagiarism.
	self-learning.	Student is able to	Student is generally able to	communicate ideas via text	Student fails to complete
		communicate ideas	communicate ideas via text	and visual aids.	the assignment.
		effectively via text and	and visual aids.		
		visual aids.			
3. Examination	1. Capacity for using physics	Student can thoroughly	Student can identify and	Student provides simple	Student fails to
	knowledge and theory to solve	identify and describe how	describe how the principles	but accurate evaluations of	demonstrate how the
	Problems.	the principles are applied	are applied towards	how the principles are	principles are applied
	2. Demonstrate	towards successful	successful completion of	applied towards successful	towards successful
	Correct understanding of	completion of	experiments.	completion of	completion of
	key concepts.	experiments.		experiments.	experiments.

Applicable to students admitted before Semester A 2022/23

Assessment Task	Criterion	Excellent (A+, A, A-)	Good (B+, B, B-)	Fair (C+, C, C-)	Marginal (D)	Failure (F)
1. Assignments	Demonstrate Correct understanding of key concepts. 2.Expand on learned concepts via self-learning.	Student completes all assignments, and demonstrates excellent understanding of the scientific principles governing the behaviour. Student is able to communicate ideas effectively and clearly via text and visual aids.	Student completes at least 80% of assignments, and demonstrates understanding of the scientific principles governing the behaviour. Student is generally able to communicate ideas via text and visual aids.	Student completes at least 70% of assignments, and shows some of the scientific principles governing the behaviour. Student is able to communicate ideas via text and visual aids accurately but in a simple manner.	Student completes at least 60% of assignments, but can only demonstrate brief understanding of the scientific principles governing the behaviour. Student is able to poorly, but accurately to communicate ideas via text and visual aids.	Student completes less than 50% of assignments. Or, fails to accurately describe the scientific principles governing the behaviour.
2. Term paper	Demonstrate Correct understanding of key concepts. Expand on learned concepts via self-learning.	Demonstrates excellent understanding of the scientific principles governing the behaviour. Student is able to communicate ideas effectively via text and visual aids.	Demonstrates understanding of the scientific principles governing the behaviour. Student is generally able to communicate ideas via text and visual aids.	Shows some of the scientific principles governing the behaviour. Student is able to communicate ideas via text and visual aids.	Can only demonstrate brief understanding of the scientific principles governing the behaviour. Student is able to poorly, but accurately to communicate ideas via text and visual aids.	Fails to accurately describe the scientific principles. Student's work shows evidence of plagiarism. Student fails to complete the asignment.
3. Examination	 Capacity for using physics knowledge and theory to solve Problems. Demonstrate Correct understanding of key concepts. 	Student can thoroughly identify and describe how the principles are applied towards successful completion of experiments.	Student can identify and describe how the principles are applied towards successful completion of experiments.	Student provides simple but accurate evaluations of how the principles are applied towards successful completion of experiments.	Student can provide only brief descriptions how the principles are applied to towards successful completion of experiments.	Student fails to demonstrate how the principles are applied towards successful completion of experiments.

Part III Other Information (more details can be provided separately in the teaching plan)

1. Keyword Syllabus

(An indication of the key topics of the course.)

- Fundamental scattering techniques: neutron diffraction, X-ray diffraction, scattering mechanisms, scattering theory.
- Advanced techniques: Inelastic neutron and X-Ray scattering.
- Spectroscopy of solids
- Instrumentation and operation of large scale facilities: Synchrotron radiation production and properties, neutron sources.
- Specific case studies in measurement and analysis of scattering data.

2. Reading List

2.1 Compulsory Readings

(Compulsory readings can include books, book chapters, or journal/magazine articles. There are also collections of e-books, e-journals available from the CityU Library.)

1.	Willis and Carlile, Experimental Neutron Scattering, Oxford University Press, 2013
2.	Warren, X-ray Diffraction, Dover, 1990
3.	Squires, Introduction to the Theory of Thermal Neutron Scattering, Cambridge U. Press, 2012

2.2 Additional Readings

(Additional references for students to learn to expand their knowledge about the subject.)

1.	Cullity & Stock, Elements of X-Ray Diffraction, 3rd ed.; Prentice Hall, 2001.
2.	Schuelke, Electron Dynamics by Inelastic X-Ray Scattering, Oxford, 2007.
3.	de Groot & Kotani, Core Level Spectroscopy of Solids, CRC Press, 2008.
4.	Duke, Synchrotron Radiation: Production and Properties, Oxford, 2008.
5.	Handbook of Accelerator Physics and Engineering, World Scientific, 2013