City University of Hong Kong Course Syllabus

offered by Department of Mechanical Engineering with effect from Semester A 2024 / 25

Part I Course Overv	view
Course Title:	Computer Controlled Systems
Course Code:	MNE8116
Course Duration:	1 semester
Credit Units:	3 credits
Level:	R8
Medium of Instruction:	English
Medium of Assessment:	English
Prerequisites: (Course Code and Title)	Nil
Precursors: (Course Code and Title)	Background knowledge in Control Principles or equivalent
Equivalent Courses : (Course Code and Title)	MNE6002/BME6002/BME8124 Computer Controlled Systems
Exclusive Courses:	Nil

Part II Course Details

1. Abstract

This course aims to develop an in-depth understanding of real-time control of automated systems using digital computers. The objective is for students to learn how to apply control theory in implementation with computers. The mathematical techniques will be introduced for discrete domain analysis and design. It will enhance students' skills for analysis, design and implementation of control systems.

2. Course Intended Learning Outcomes (CILOs)

(CILOs state what the student is expected to be able to do at the end of the course according to a given standard of performance.)

No.	CILOs	Weighting (if applicable)	Discovery-enriched curriculum related learning outcomes (please tick where appropriate)		
			A1	A2	A3
1.	to give an account of the fundamentals of digital control and to implementation advanced control methods using computers.		√	√	√
2.	to analyze discrete-time systems using z-transform.		√	√	
3.	to design discrete-time control systems using z-plane and frequency domain methods.			√	√
4.	to apply state-space based controller design for discrete time systems.			√	√
5.	to adapt advanced control methods for computer control of dynamic systems such as robots, industrial equipment and processes.			√	√
		N.A.			

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to real-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

3. Learning and Teaching Activities (LTAs)

(LTAs designed to facilitate students' achievement of the CILOs.)

LTA	Brief Description	CILO No.					Hours/week (if applicable)
		1	2	3	4	5	
Lecture	The main teaching activities will be in the form of lectures but the lectures are sometimes broken up with small group discussions where students work with their neighbors before feeding back the results to the class.	✓	>	✓	>		2 hrs/week
Tutorial	Tutorials are problem-solving sessions and are sometimes broken up into small group discussions.	√	✓	√	→		1 hr/week

4. Assessment Tasks/Activities (ATs)

(ATs are designed to assess how well the students achieve the CILOs.)

Assessment Tasks/Activities	CILO No.					Weighting	Remarks
	1	2	3	4	5		
Continuous Assessment: 40%							
Mini-project	✓	✓	✓	✓	✓	20%	
Assignment/ Test	✓	✓	✓	✓	✓	20%	
Examination: 60% (duration: 2.5 hours)							
Examination	✓	✓	✓	✓	✓	60%	
						100%	

For a student to pass the course, at least 30% of the maximum mark for both coursework and examination should be obtained.

5. Assessment Rubrics

(Grading of student achievements is based on student performance in assessment tasks/activities with the following rubrics.)

Applicable to students admitted before Semester A 2022/23 and in Semester A 2024/25 & thereafter

Assessment Task	Criterion	Excellent	Good	Fair	Marginal	Failure
		(A+, A, A-)	(B+, B, B-)	(C+, C, C-)	(D)	(F)
1. Examination	Written exam at the end of the semester.	High	Significant	Moderate	Basic	Not even reaching marginal levels
2. Mid-term and In-class Quiz	To test students' understanding of the topics during the course of the lecture.	High	Significant	Moderate	Basic	Not even reaching marginal levels
3. Homework	Pass or fail to see student attitudes and ability.	High	Significant	Moderate	Basic	Not even reaching marginal levels

Applicable to students admitted from Semester A 2022/23 to Summer Term 2024

Assessment Task	Criterion	Excellent	Good	Marginal	Failure
		(A+, A, A-)	(B+, B)	(B-, C+, C)	(F)
1. Examination	Written exam at the end of the semester.	High	Significant	Moderate	Not even reaching marginal levels
2. Mid-term and In-class Quiz	To test students' understanding of the topics during the course of the lecture.	High	Significant	Moderate	Not even reaching marginal levels
3. Homework	Pass or fail to see student attitudes and ability.	High	Significant	Moderate	Not even reaching marginal levels

Part III Other Information (more details can be provided separately in the teaching plan)

1. Keyword Syllabus

(An indication of the key topics of the course.)

Digital control fundamentals, z-transform, z-plane analysis of discrete-time systems, design of discrete-time control systems, control implementation using computers, controller design using state feedback, intelligent control, robot control.

2. Reading List

2.1 Compulsory Readings

(Compulsory readings can include books, book chapters, or journal/magazine articles. There are also collections of e-books, e-journals available from the CityU Library.)

N.A.

2.2 Additional Readings

(Additional references for students to learn to expand their knowledge about the subject.)

1.	K. Ogata, Discrete-Time Control Systems, Prentice Hall, Inc.
2.	K. J. Astrom and B. Wittenmark, Computer Controlled Systems, Prentice Hall, Inc.
3.	R. G. Jacquot, Modern Digital Control Systems, Marcel Dekker.
4.	F. Franklin, J. J. Powell and M. L. Workman, Digital Control of Dynamic Systems, Addison Wesley.
5.	Jaulin, Luc, Automation for robotics, Hoboken, N.J.: Wiley, 2015.
6.	Niku Saeed B, Introduction to Robotics: Analysis, Control, Applications, Hoboken: John Wiley Inc, 2015.
7.	F. L. Lewis, C. T. Abdallah and D. M. Dawson, Control of robot manipulators, Macmillan Publishing Co.
8.	Dinwiddie, Keith, Basic Robotics, Boston, MA: Cengage Learning, TJ211.D569 2015.