City University of Hong Kong Course Syllabus

offered by Department of Mechanical Engineering with effect from Semester A 2024 / 25

Part I Course Overview

Course Title:	CAD/CAM/CAE Integration					
Course Code:	MNE8112					
Course Duration:	1 semester					
Credit Units:	3 credits					
Level:	R8					
Medium of						
Instruction:	English					
Medium of						
Assessment:	English					
Prerequisites:						
(Course Code and Title)	Nil					
Precursors:						
(Course Code and Title)	Nil					
Equivalent Courses:						
(Course Code and Title)	MNE6001 CAD/CAM Integration					
Exclusive Courses:						
(Course Code and Title)	Nil					

Part II Course Details

1. Abstract

The aim of this course is to develop a comprehensive understanding of technology underlying Computer Aided Design and Manufacture and Computer Aided Engineering solutions. Students will learn how to apply CAD/CAM/CAE technology to solve integrated design/analysis/manufacturing problems with a significant geometric component.

2. Course Intended Learning Outcomes (CILOs)

(CILOs state what the student is expected to be able to do at the end of the course according to a given standard of performance.)

No.	CILOs	Weighting (if applicable)	Discovery-enriched curriculum related learning outcomes (please tick where appropriate)		
			A1	A2	A3
1.	describe the mathematical basis for the representation of geometric entities including parametric curves and free-form surfaces.		✓	~	
2.	describe the basic theories and algorithms for solid modelling and other advanced representation schemes.		~	~	
3.	elaborate the general methodology for integrated CAD/CAE solutions and apply the method for typical applications.		~	~	
4.	describe the techniques in CNC toolpath computation for 3-axis and multi-axis machining with selected topics in advanced CAD/CAM applications.		~	~	
5.	interpret a design/analysis/manufacturing problem with a significant geometric component, translate it into an algorithmic problem, and apply relevant techniques to solve it.			~	~
		N.A.			

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability Develop

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to real-life problems.

A3: Accomplishments Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

3. Learning and Teaching Activities (LTAs)

(LTAs designed to facilitate students' achievement of the CILOs.)

LTA	Brief Description	CILO No.					Hours/week (if applicable)
		1	2	3	4	5	
Lecture	Lectures covering four major areas	✓	✓	\checkmark	✓	~	2 hrs/week
	on CAD modelling, integrated						
	CAD/CAE solutions, CAM						
	processing, and 3D printing.						
Tutorial	Tutorials on CAD modelling,	✓	✓			\checkmark	1 hr/week for 8 weeks
	including spline-based modelling,						
	subdivision-based modelling and						
	solid modelling.						
Mini-project	Mini-projects covering various			✓	✓	\checkmark	1 hr/week for 5 weeks
	topics on integrated CAD/CAE						
	solutions, CAM, 3D printing and						
	other closely related topics.						

4. Assessment Tasks/Activities (ATs)

(ATs are designed to assess how well the students achieve the CILOs.)

Assessment Tasks/Activities	CILO No.					Weighting	Remarks
	1	2	3	4	5		
Continuous Assessment: 40%							
Assignment / Test	\checkmark	✓			\checkmark	15%	
Mini-project			\checkmark	✓	✓	25%	
Examination: 60% (duration	:2 h	ours))				
Examination	\checkmark	✓	~	\checkmark	\checkmark	60%	
						100%	

For a student to pass the course, at least 30% of the maximum mark for both coursework and examination should be obtained.

5. Assessment Rubrics

(Grading of student achievements is based on student performance in assessment tasks/activities with the following rubrics.)

Applicable to students admitted before Semester A 2022/23 and in Semester A 2024/25 & thereafter

Assessment Task	Criterion	Excellent	Good	Fair	Marginal	Failure
		(A+, A, A-)	(B+, B, B-)	(C+, C, C-)	(D)	(F)
1. Examination	Through examination, the students will be evaluated on the	High	Significant	Moderate	Basic	Not even
	knowledge in the fields of CAD/CAM/CAE integration.	_	_			reaching
						marginal levels
2. Assignment/	Tutorials mainly covering various topics of lectures on CAD	High	Significant	Moderate	Basic	Not even
Test	modelling and processing.					reaching
						marginal levels
3. Mini-project	Mini-projects mainly covering topics on integrated CAD/CAE	High	Significant	Moderate	Basic	Not even
	solutions, CAM processing, 3D printing, and other closely related					reaching
	topics.					marginal levels

Applicable to students admitted from Semester A 2022/23 to Summer Term 2024

Assessment Task	Criterion	Excellent	Good	Marginal	Failure
		(A+, A, A-)	(B+, B)	(B-, C+, C)	(F)
1. Examination	Through examination, the students will be evaluated on the knowledge in the fields of CAD/CAM/CAE integration.	High	Significant	Moderate	Not even reaching marginal levels
2. Assignment/ Test	Tutorials mainly covering various topics of lectures on CAD modelling and processing.	High	Significant	Moderate	Not even reaching marginal levels
3. Mini-project	Mini-projects mainly covering topics on integrated CAD/CAE solutions, CAM processing, 3D printing, and other closely related topics.	High	Significant	Moderate	Not even reaching marginal levels

Part III Other Information (more details can be provided separately in the teaching plan)

1. Keyword Syllabus

(An indication of the key topics of the course.)

CAD/CAM systems, Bezier, B-spline and NURBS for curve and surface modelling, subdivision-based modelling, CSG and B-Rep for solid modelling, algorithms for curve/curve intersection, curve/surface intersection and surface/surface intersection, isogeometric analysis for integrated CAD/CAE solutions with typical applications in computational mechanics and thermal analysis, algorithms for 3-axis and multi-axis toolpath extraction, data processing for 3D printing.

2. Reading List

2.1 Compulsory Readings

(Compulsory readings can include books, book chapters, or journal/magazine articles. There are also collections of e-books, e-journals available from the CityU Library.)

N.A.

2.2 Additional Readings

(Additional references for students to learn to expand their knowledge about the subject.)

1.	Les Piegl and Wayne Tiller, "The NURBS Book", Springer-Verlag Berlin, Heidelberg, 1997.
2.	David F. Rogers, "An Introduction to NURBS : with Historical Perspectives", Academic Press,
	San Francisco, 2001.
3.	I. Zeid, "Mastering CAD/CAM with Engineering Subscription Card", McGraw-Hill, 2004.
4.	J. Austin Cottrell, Thomas J. R. Hughes, Yuri Bazilevs, "Isogeometric Analysis: Toward
	Integration of CAD and FEA", John Wiley & Sons, 2009.
5.	Christopher G. Provatidis, "Precursors of Isogeometric Analysis: Finite Elements, Boundary
	Elements, and Collocation Methods", Springer, 2019.
6.	I. Gibson, D. Rosen and B. Stucker, "Additive Manufacturing Technologies - 3D Printing, Rapid
	Prototyping, and Direct Digital Manufacturing", Springer-Verlag New York, 2015.
7.	Computer Methods in Applied Mechanics and Engineering, Elsevier Science.
8.	Computer-Aided Design Journal, Elsevier Science.