City University of Hong Kong Course Syllabus

offered by Department of Mechanical Engineering with effect from Semester A 2024/25

Part I Course Overview

Course Title:	Sustainable Engineering Practice
Course Code:	MNE6129
Course Duration:	One semester
Credit Units:	3
Level:	P6
Medium of Instruction:	English
mstruction.	
Medium of	
Assessment:	English
Prerequisites:	
(Course Code and Title)	Nil
Precursors:	
(Course Code and Title)	Nil
Equivalent Courses:	
(Course Code and Title)	Nil
Exclusive Courses:	
(Course Code and Title)	Nil

1. Abstract

The course aims to equip students with the quintessential experimental skills and further practical appreciation on the various sustainable engineering technologies. Being an experimental-based course, the course will also impart key skills in data collection and critical analysis of experimental data to good practice in report writing. Through this course, students will grow appreciation in bridging theoretical knowledge with experimental practice.

2. Course Intended Learning Outcomes (CILOs)

(CILOs state what the student is expected to be able to do at the end of the course according to a given standard of performance.)

No.	CILOs [#]	Weighting	Discov	ery-en	riched
		(if	curricu	•	
		applicable)	learnin	g outee	omes
			(please	tick	where
			approp	riate)	
			Al	A2	A3
1.	Apply the theory of thermodynamics and heat transfer, to			~	
	systems of energy efficiencies, for instance refrigeration				
	cycle and heat exchanger design; collect and analyze				
	relevant experimental data; apply good practice in report				
	writing.				
2.	Apply the theory of renewable energy conversion systems,			\checkmark	
	such as photovoltaic solar cells, fuel cells and biofuel				
	conversion; collect and analyze relevant experimental data;				
	apply good practice in report writing.				
3.	Apply the theory of environmental abatement techniques in			\checkmark	
	air and wastewater purification; collect and analyze				
	relevant experimental data; apply good practice in report				
	writing.				
4.	Apply good practice in verbal presentation of experimental			\checkmark	
	findings.				
		N.A.	J		

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to real-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

3. Learning and Teaching Activities (LTAs)

(LTAs designed to facilitate students' achievement of the CILOs.)

LTA	Brief Description	CILC	CILO No.			Hours/week (if	
		1	2	3	4	applicable)	
Lecture	Explain key concepts and principles behind each experimental module.	~	~	✓		1 hr/week	
Lab-based experiment and oral presentation	Hands-on lab session to acquire and analyze data; present experimental findings.	~	~	✓	~	2 hrs/week	

4. Assessment Tasks/Activities (ATs)

(ATs are designed to assess how well the students achieve the CILOs.)

Assessment Tasks/Activities	CILO	CILO No.			Weighting	Remarks
	1	2	3	4		
Continuous Assessment: 100%						
Lab report	✓	✓	✓		85%	
Oral presentation				\checkmark	15%	
Examination: 0%						
					100%	

To pass a course, a student must do the following:

Obtain at least 30% of the total marks allocated to each coursework component of lab reports and oral presentation.

5. Assessment Rubrics

(Grading of student achievements is based on student performance in assessment tasks/activities with the following rubrics.)

Assessment Task	Criterion	Excellent	Good	Fair	Marginal	Failure
		(A+, A, A-)	(B+, B, B-)	(C+, C, C-)	(D)	(F)
		75%-100%	60%-74%	45%-59%	40%-44%	<40%
1. Lab report	Ability to explain the	Strong evidence	Evidence of	Student who is	Sufficient	Little
	methodology and procedure and	of critical	grasp of subject,	profiting from the	familiarity with	evidence of
	analyze the experimental data and	thinking; good	some evidence	laboratory class;	the laboratory	familiarity
	discuss the experimental findings.	organization,	of critical	understanding of	content to	with the
		capacity to	capacity and	the subject; ability	enable the	laboratory
		analyze and	analytic ability;	to develop	student to move	class
		synthesize;	reasonable	solutions to	onto other	materials;
		superior grasp of	understanding of	concerning the	laboratory	weakness in
		subject matter;	issues; evidence	experiment.	materials.	critical and
		evidence of	of familiarity			analytic
		extensive	with			skills;
		knowledge of the	experiment.			limited, or
		experimental	-			irrelevant
		matters				use of data.
		concerned.				
2. Oral presentation	Ability to orally present the key	Strong ability to	Good ability to	Some ability to	Marginal ability	Not even
_	information related to the	orally present the	orally present	orally present the	to orally present	reaching
	experiments.	key information	the key	key information	the key	marginal
		related to the	information	related to the	information	levels.
		experiments.	related to the	experiments.	related to the	
		-	experiments.	_	experiments.	

Applicable to students admitted before Semester A 2022/23 and in Semester A 2024/25 & thereafter

Assessment Task	Criterion	Excellent	Good	Marginal	Failure	
		(A+, A, A-)	(B+, B)	(B-, C+, C)	(F)	
		75%-100%	65%-74%	50%-64%	<50%	
1. Lab report	Ability to explain the methodology and procedure and analyze the experimental data and discuss the experimental findings.	Strong evidence of critical thinking; good organization, capacity to analyze and synthesize; superior grasp of subject matter; evidence of extensive knowledge of the experimental matters concerned.	Evidence of grasp of subject, some evidence of critical capacity and analytic ability; reasonable understanding of issues; evidence of familiarity with experiment.	Student who is profiting from the laboratory class; understanding of the subject; ability to develop solutions to concerning the experiment.	Little evidence of familiarity with the laboratory class materials; weakness in critical and analytic skills; limited, or irrelevant use of data.	
2. Oral presentation	Ability to orally present the key information related to the experiments.	Strong ability to orally present the key information related to the experiments.	Good ability to orally present the key information related to the experiments.	Some ability to orally present the key information related to the experiments.	Not even reaching marginal levels.	

Applicable to students admitted from Semester A 2022/23 to Summer Term 2024

Part III Other Information (more details can be provided separately in the teaching plan)

1. Keyword Syllabus

(An indication of the key topics of the course.)

Energy efficiency: Refrigeration cycle Heat exchanger design

Renewable energy conversion:

Solar cells assembly and assessment Fuel cells assembly and assessment Waste to biofuel conversion

Environmental abatement

Advanced oxidation techniques Treatment of wastewater

2. Reading List

2.1 Compulsory Readings

(Compulsory readings can include books, book chapters, or journal/magazine articles. There are also collections of e-books, e-journals available from the CityU Library.)

N.A.

2.2 Additional Readings

(Additional references for students to learn to expand their knowledge about the subject.)

1.	Cengel, Y.A., Boles, M.A., Thermodynamics: An Engineering Approach, McGraw-Hill, 2006.
2.	Incropera, F.P., DeWitt, D.P., Bergman, T.L., Lavine, A.S., Fundamentals of heat and mass
	trasnfer, John Wiley & Sons, New York, 2011.
3.	Hagfeldt, A., Boschloo, G., Sun, L., Kloo, L., Pettersson, H., Dye-sensitized solar cells, Chem.
	Rev. 2010, 110, 6595.
4.	O'Hayre, R., Cha, SW., Colella, W., Prinz, F.B., Fuel Cell Fundamentals, John Wiley and
	Sons, New York, 2006.
5.	Tchobanoglous, G., Burton, F., David Stensel, H., Wastewater Engineering: Treatment and
	Reuse, Metcalf and Eddy, McGraw-Hill, 2002.
6.	Burch, R., Knowledge and know-how in emission control for mobile applications, Catal.
	RevSci. Eng., 2004, 46, 271.