Course Syllabus

offered by Department of Mathematics with effect from Semester A 2022/23

Part I Course Overview

Course Title:	Methods for Applied Mathematics
Course Code:	MA8011
Course Duration:	One semester
Credit Units:	3
Level:	R8
Medium of Instruction:	English
Medium of Assessment:	English
Prerequisites : (Course Code and Title)	Nil
Precursors: (Course Code and Title)	Nil
Equivalent Courses: (Course Code and Title)	Nil
Exclusive Courses : (Course Code and Title)	Nil

Part II Course Details

1. Abstract

This course includes two topics: real analysis and differential geometry. It will help students to develop a logical and systematic understanding of the core material of real analysis and differential geometry.

2. Course Intended Learning Outcomes (CILOs)

No.	CILOs#	Weighting* (if applicable)	Discov curricu learnir (please approp	very-en ulum re ng outco e tick priate)	riched lated omes where
1.	develop a systematic understanding of elementary properties	10%	AI	1 $A2$ $$	A3 $$
2.	of measures develop a systematic understanding of simple functions and apply them to integration	10%	\checkmark		
3.	develop a logical and systematic understanding of positive Borel measure	20%	\checkmark	\checkmark	
4.	apply the approximations by continuous functions	10%			1
5.	explain basic properties of curves including their curvature and torsion	10%		\checkmark	
6.	develop a systematic understanding of the tangent plane and the first fundamental form of surfaces; the concept of local charts is included	20%	\checkmark	\checkmark	\checkmark
7.	develop a systematic understanding of the Gauss map and its fundamental properties	20%	\checkmark	\checkmark	
		100%			

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

 A2: Ability Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to self-life problems.
A3: Accomplishments

Accomplishments Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

3. Teaching and Learning Activities (TLAs)

TLA	Brief Description		CILO No.			Hours/week			
		1	2	3	4	5	6	7	(if applicable)
Lectures	Learning through teaching is						\checkmark		40 hours in
	primarily based on lectures								total
Assignments	Learning through take-home								after-class
-	assignments helps students								
	understand basic mathematical								

concepts and fundamental theory of this course, and develop the ability of proving mathematical statements rigorously.				

4. Assessment Tasks/Activities (ATs)

Assessment Tasks/Activities		CILO No.						Weighting	Remarks
	1	2	3	4	5	6	7	*	
Continuous Assessment: 30%									
Test								20%	
Hand-in assignments								10%	
Examination: 70% (duration: 2 hours)									

100%

5. Assessment Rubrics

Applicable to students admitted in Semester A 2022/23 and thereafter

Assessment Task	Criterion	Excellent	Good	Marginal	Failure
		(A+, A, A-)	(B+, B)	(B-,C+,C)	(F)
1. Test	Ability to prove mathematical statements rigorously	High	Significant	Basic	Not even reaching marginal levels
2. Hand-in Assignments	Demonstration of the understanding of the basic materials	High	Significant	Basic	Not even reaching marginal levels
3. Examination	Demonstration of skills and versatility in this course	High	Significant	Basic	Not even reaching marginal levels

Applicable to students admitted before Semester A 2022/23

Assessment Task	Criterion	Excellent	Good	Fair	Marginal	Failure
		(A+, A, A-)	(B+, B, B-)	(C+, C, C-)	(D)	(F)
1. Test	Ability to prove mathematical statements rigorously	High	Significant	Moderate	Basic	Not even reaching marginal levels
2. Hand-in Assignments	Demonstration of the understanding of the basic materials	High	Significant	Moderate	Basic	Not even reaching marginal levels
3. Examination	Demonstration of skills and versatility in this course	High	Significant	Moderate	Basic	Not even reaching marginal levels

Part III Other Information (more details can be provided separately in the teaching plan)

1. Keyword Syllabus

 σ -algebra, topological space, metm's space, measurable sets, Borel sets, the Riesz representation Theorem, tangent plane, the first fundamental form, Gauss map, the second fundamental form.

2. Reading List

2.1 Compulsory Readings

1.	"Real and Complex Analysis" by Walter Rudin
2.	"Differential Geometry of Curves and Surfaces" by Manfredo P. Do Carmo
3.	

2.2 Additional Readings

(Additional references for students to learn to expand their knowledge about the subject.)

1.	
2.	
3.	