City University of Hong Kong Course Syllabus

offered by College/School/Department of <u>Mathematics</u> with effect from Semester <u>A</u> 20 22 / 23

Part I Course Over	view
Course Title:	Numerical Partial Differential Equations
Course Code:	MA6612
Course Duration:	One Semester
Credit Units:	3
Level:	_P6
Medium of Instruction:	English
Medium of Assessment:	English
Prerequisites: (Course Code and Title)	Nil
Precursors: (Course Code and Title)	Nil
Equivalent Courses : (Course Code and Title)	Nil
Exclusive Courses: (Course Code and Title)	Nil

1

Part II Course Details

1. Abstract

This course aims to

- introduce further numerical methods for the solutions of partial differential equations; and
- provide an overview of criteria for analyzing stability and accuracy properties of numerical solutions of boundary value problems.

2. Course Intended Learning Outcomes (CILOs)

(CILOs state what the student is expected to be able to do at the end of the course according to a given standard of performance.)

No.	CILOs	Weighting (if applicable)	Discov curricu learnin (please approp	lum rel g outco tick	lated omes
			Al	A2	A3
1.	explain mathematical theory underlying basic numerical methods for the solutions of partial differential equations.	20%	✓		
2.	perform stability and convergence analysis to investigate applicability of numerical methods for solving partial differential equations.	20%	√		
3.	carry out finite difference and finite element methods to approximate solutions of initial-boundary value problems.	20%	√	√	
4.	implement discretization methods, including spectral collocation and Galerkin approximation, to special types of partial differential equations.	20%	√	√	
5.	apply numerical and computational methods to obtain and analyze solutions of partial differential equations arising in physical science.	20%		√	√
		100%		•	

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to self-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

Teaching and Learning Activities (TLAs) (TLAs designed to facilitate students' achievement of the CILOs.)

TLA	Brief Description	CILO	O No.			Hours/week (if		
		1	2	3	4	5	6	applicable)
Lectures	Learning through teaching is primarily based on lectures.	√	√	√	√	√		39 hours in total
Take-home Assignments	Learning through take-home assignments helps students implement and analyze numerical methods for approximating solutions of partial differential equations.	√	✓	✓	✓			after-class
Project(s)	Learning through project(s) helps students obtain approximate solutions of physically-arising initial/boundary value problems with mathematical justification by principles and numerical techniques introduced in this course.					✓		after-class

4. Assessment Tasks/Activities (ATs) (ATs are designed to assess how well the students achieve the CILOs.)

30% Coursework

70% Examination (Duration: 3 hours, at the end of the semester)

Assessment Tasks/Activities			Weighting	Remarks				
		1 2 3 4 5 6				6		
Continuous Assessment: 30 %								
Test	\ \	✓	✓ 				1530%	Questions are designed for the first part of the course to see how well the students have learned mathematical criteria for analyzing numerical methods of solving partial differential equations, as well as the methods of finite difference and finite element.
Hand-in assignments	√	✓	✓	✓	✓		015%	These are skills-based assessment
								which enables students to
								demonstrate techniques of
								approximating solutions of partial
								differential equations by numerical
								methods and analyzing accuracy of
								solutions with the aid of computing
								softwares.
Project(s)					√		015%	Students are assessed on their ability
								in implementing numerical and
								computational techniques to
								formulate physical applications as
								initial/boundary value problems, as
								well as on the presentation of
								numerical results with analysis.
Examination: _70% (durat	ion:	3]	hrs,	ifa	app	lica	ble)	Examination questions are designed
								to see how far students have achieved
								their intended learning outcomes.
								Questions will primarily be skills and
								understanding based to assess the
								student's versatility in numerical
								methods of solving partial differential
								equations.
							100%	

Course Syllabus Jun 2017

5. Assessment Rubrics

(Grading of student achievements is based on student performance in assessment tasks/activities with the following rubrics.)

Applicable to students admitted in Semester A 2022/23 and thereafter

Assessment Task	Assessment Task Criterion		Good	Marginal	Failure
		(A+, A, A-)	(B+, B)	(B-, C+, C)	(F)
1. Test Independent problem solving skills		High	Significant	Basic	Not even reaching
	on progressive learning based on				marginal levels
	lecture				
2. Hand-in	Understanding based on both	High	Significant	Basic	Not even reaching
assignments	lecture and outsource reference				marginal levels
3. Project(s)	Comprehensive understanding and	High	Significant	Basic	Not even reaching
	creativity on combination of class				marginal levels
	learning and relative resources				
4. Examination	Comprehensive problem solving	High	Significant	Basic	Not even reaching
	skills on learning materials				marginal levels

Applicable to students admitted before Semester A 2022/23

Assessment Task	Criterion	Excellent (A+, A, A-)	Good (B+, B, B-)	Fair (C+, C, C-)	Marginal (D)	Failure (F)
1. Test	Independent problem solving skills on progressive learning based on lecture	High	Significant	Moderate	Basic	Not even reaching marginal levels
2. Hand-in assignments	Understanding based on both lecture and outsource reference	High	Significant	Moderate	Basic	Not even reaching marginal levels
3. Project(s)	Comprehensive understanding and	High	Significant	Moderate	Basic	Not even reaching marginal levels

	creativity on combination of class learning and relative resources					
4. Examination	Comprehensive problem solving skills on learning materials	High	Significant	Moderate	Basic	Not even reaching marginal levels

Part III Other Information (more details can be provided separately in the teaching plan)

1. Keyword Syllabus

(An indication of the key topics of the course.)

Description and numerical analysis of the main approximation methods for stationary and time-dependent boundary value problems: Finite differences, finite elements, spectral and collocation methods. Stability, consistency and convergence.

2. Reading List

2.1 Compulsory Readings

(Compulsory readings can include books, book chapters, or journal/magazine articles. There are also collections of e-books, e-journals available from the CityU Library.)

1.	Lecture Note by Graeme Fairweather and Ian Gladwell; and Lecture Note by Weiwei
	Sun.
2.	
3.	

2.2 Additional Readings

(Additional references for students to learn to expand their knowledge about the subject.)

1.	
2.	
3.	