City University of Hong Kong Course Syllabus # offered by College/School/Department of <u>Mathematics</u> with effect from Semester <u>A</u> 20 22 / 23 | Part I Course Over | view | |---|--| | Course Title: | Numerical Partial Differential Equations | | Course Code: | MA6612 | | Course Duration: | One Semester | | Credit Units: | 3 | | Level: | _P6 | | Medium of Instruction: | English | | Medium of Assessment: | English | | Prerequisites: (Course Code and Title) | Nil | | Precursors: (Course Code and Title) | Nil | | Equivalent Courses : (Course Code and Title) | Nil | | Exclusive Courses: (Course Code and Title) | Nil | 1 ### Part II Course Details ### 1. Abstract This course aims to - introduce further numerical methods for the solutions of partial differential equations; and - provide an overview of criteria for analyzing stability and accuracy properties of numerical solutions of boundary value problems. ### 2. Course Intended Learning Outcomes (CILOs) (CILOs state what the student is expected to be able to do at the end of the course according to a given standard of performance.) | No. | CILOs | Weighting
(if
applicable) | Discov
curricu
learnin
(please
approp | lum rel
g outco
tick | lated
omes | |-----|--|---------------------------------|---|----------------------------|---------------| | | | | Al | A2 | A3 | | 1. | explain mathematical theory underlying basic numerical methods for the solutions of partial differential equations. | 20% | ✓ | | | | 2. | perform stability and convergence analysis to investigate applicability of numerical methods for solving partial differential equations. | 20% | √ | | | | 3. | carry out finite difference and finite element methods to approximate solutions of initial-boundary value problems. | 20% | √ | √ | | | 4. | implement discretization methods, including spectral collocation and Galerkin approximation, to special types of partial differential equations. | 20% | √ | √ | | | 5. | apply numerical and computational methods to obtain and analyze solutions of partial differential equations arising in physical science. | 20% | | √ | √ | | | | 100% | | • | | ### A1: Attitude Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers. ### A2: Ability Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to self-life problems. ### A3: Accomplishments Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes. **Teaching and Learning Activities (TLAs)** (TLAs designed to facilitate students' achievement of the CILOs.) | TLA | Brief Description | CILO | O No. | | | Hours/week (if | | | |--------------------------|--|----------|----------|----------|----------|----------------|---|-------------------| | | | 1 | 2 | 3 | 4 | 5 | 6 | applicable) | | Lectures | Learning through teaching is primarily based on lectures. | √ | √ | √ | √ | √ | | 39 hours in total | | Take-home
Assignments | Learning through take-home assignments helps students implement and analyze numerical methods for approximating solutions of partial differential equations. | √ | ✓ | ✓ | ✓ | | | after-class | | Project(s) | Learning through project(s) helps students obtain approximate solutions of physically-arising initial/boundary value problems with mathematical justification by principles and numerical techniques introduced in this course. | | | | | ✓ | | after-class | **4.** Assessment Tasks/Activities (ATs) (ATs are designed to assess how well the students achieve the CILOs.) 30% Coursework 70% Examination (Duration: 3 hours, at the end of the semester) | Assessment Tasks/Activities | | | Weighting | Remarks | | | | | |-----------------------------|----------|-------------|-----------|---------|----------|------|-------|--| | | | 1 2 3 4 5 6 | | | | 6 | | | | Continuous Assessment: 30 % | | | | | | | | | | Test | \ \ | ✓ | ✓
 | | | | 1530% | Questions are designed for the first
part of the course to see how well the
students have learned mathematical
criteria for analyzing numerical
methods of solving partial differential
equations, as well as the methods of
finite difference and finite element. | | Hand-in assignments | √ | ✓ | ✓ | ✓ | ✓ | | 015% | These are skills-based assessment | | | | | | | | | | which enables students to | | | | | | | | | | demonstrate techniques of | | | | | | | | | | approximating solutions of partial | | | | | | | | | | differential equations by numerical | | | | | | | | | | methods and analyzing accuracy of | | | | | | | | | | solutions with the aid of computing | | | | | | | | | | softwares. | | Project(s) | | | | | √ | | 015% | Students are assessed on their ability | | | | | | | | | | in implementing numerical and | | | | | | | | | | computational techniques to | | | | | | | | | | formulate physical applications as | | | | | | | | | | initial/boundary value problems, as | | | | | | | | | | well as on the presentation of | | | | | | | | | | numerical results with analysis. | | Examination: _70% (durat | ion: | 3] | hrs, | ifa | app | lica | ble) | Examination questions are designed | | | | | | | | | | to see how far students have achieved | | | | | | | | | | their intended learning outcomes. | | | | | | | | | | Questions will primarily be skills and | | | | | | | | | | understanding based to assess the | | | | | | | | | | student's versatility in numerical | | | | | | | | | | methods of solving partial differential | | | | | | | | | | equations. | | | | | | | | | 100% | | Course Syllabus Jun 2017 # 5. Assessment Rubrics (Grading of student achievements is based on student performance in assessment tasks/activities with the following rubrics.) # Applicable to students admitted in Semester A 2022/23 and thereafter | Assessment Task | Assessment Task Criterion | | Good | Marginal | Failure | |--|------------------------------------|-------------|-------------|-------------|-------------------| | | | (A+, A, A-) | (B+, B) | (B-, C+, C) | (F) | | 1. Test Independent problem solving skills | | High | Significant | Basic | Not even reaching | | | on progressive learning based on | | | | marginal levels | | | lecture | | | | | | 2. Hand-in | Understanding based on both | High | Significant | Basic | Not even reaching | | assignments | lecture and outsource reference | | | | marginal levels | | 3. Project(s) | Comprehensive understanding and | High | Significant | Basic | Not even reaching | | | creativity on combination of class | | | | marginal levels | | | learning and relative resources | | | | | | 4. Examination | Comprehensive problem solving | High | Significant | Basic | Not even reaching | | | skills on learning materials | | | | marginal levels | # Applicable to students admitted before Semester A 2022/23 | Assessment Task | Criterion | Excellent (A+, A, A-) | Good
(B+, B, B-) | Fair (C+, C, C-) | Marginal (D) | Failure
(F) | |------------------------|--|-----------------------|---------------------|------------------|--------------|-----------------------------------| | 1. Test | Independent problem
solving skills on
progressive learning
based on lecture | High | Significant | Moderate | Basic | Not even reaching marginal levels | | 2. Hand-in assignments | Understanding based on both lecture and outsource reference | High | Significant | Moderate | Basic | Not even reaching marginal levels | | 3. Project(s) | Comprehensive understanding and | High | Significant | Moderate | Basic | Not even reaching marginal levels | | | creativity on
combination of class
learning and relative
resources | | | | | | |----------------|---|------|-------------|----------|-------|-----------------------------------| | 4. Examination | Comprehensive problem solving skills on learning materials | High | Significant | Moderate | Basic | Not even reaching marginal levels | ### Part III Other Information (more details can be provided separately in the teaching plan) ### 1. Keyword Syllabus (An indication of the key topics of the course.) Description and numerical analysis of the main approximation methods for stationary and time-dependent boundary value problems: Finite differences, finite elements, spectral and collocation methods. Stability, consistency and convergence. # 2. Reading List # 2.1 Compulsory Readings (Compulsory readings can include books, book chapters, or journal/magazine articles. There are also collections of e-books, e-journals available from the CityU Library.) | 1. | Lecture Note by Graeme Fairweather and Ian Gladwell; and Lecture Note by Weiwei | |----|---| | | Sun. | | 2. | | | 3. | | | | | ### 2.2 Additional Readings (Additional references for students to learn to expand their knowledge about the subject.) | 1. | | |----|--| | 2. | | | 3. | | | | |