City University of Hong Kong Course Syllabus

offered by Department of Economics and Finance with effect from Semester <u>A</u> 20<u>24</u> /<u>25</u>

Part I Course Overview

Course Title:	Computational Economics
Course Code:	EF5413
Course Duration:	1 semester
course Duration.	
Credit Units	3
crean omis.	<u> </u>
Level	Ρ5
Medium of	English
Instruction:	English
Medium of	For elled
Assessment:	English
Prerequisites:	
(Course Code and Title)	Nil
Precursors:	
(Course Code and Title)	Nil
Equivalent Courses:	
(Course Code and Title)	Nil
Exclusive Courses:	
(Course Code and Title)	Nil

Part II Course Details

1. Abstract

This course provides an introduction to the frontier of computational economics, particularly in the area of dynamic general equilibrium modelling. After an introduction to standard numerical methods, the course covers in detail numerical dynamic programming, linear quadratic and linear approximation methods, projection methods, computation of stationary distributions in heterogeneous agent models, and numerical solution of many periods overlapping generations models.

2. Course Intended Learning Outcomes (CILOs)

(CILOs state what the student is expected to be able to do at the end of the course according to a given standard of performance.)

No.	CILOs	Weighting (if applicable)	Discovery-enriched curriculum related learning outcomes (please tick where		
			approp	priate)	-
			Al	A2	A3
1.	Replicate and apply the computational methods covered in this course.	60%	\checkmark	\checkmark	
2.	Critical evaluate applications of computational economics in the literature.	40%	V	V	
	·	100%		•	•

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to real-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

3. Learning and Teaching Activities (LTAs)

(LTAs designed to facilitate students' achievement of the CILOs.)

LTA	Brief Description	CILO No.		CILO No.		Hours/week (if applicable)
	_	1	2			
Lectures, in- class discussions, assignments	Evaluate applications of computational economics in the literature and discuss how to replicate and apply them.	V	V	3 hours lecture per week		

4. Assessment Tasks/Activities (ATs)

(ATs are designed to assess how well the students achieve the CILOs.)

Assessment Tasks/Activities	CILO		Weighting	Remarks
	No.			
	1	2		
Continuous Assessment: <u>40</u> %				
Homework assignments,			40%	
discussions				
Examination: 60% (duration: 3 hours, if applicable)				
Examination			60%	
			100%	

5. Assessment Rubrics

(Grading of student achievements is based on student performance in assessment tasks/activities with the following rubrics.)

Assessment Task Excellent Good Criterion Fair Marginal Failure (A+, A, A-) (B+, B, B-)(C+, C, C-) (D) (F) 1. Homework Demonstrate the capability of understanding and applying assignments, discussions computation economics. High Significant Basic Not even reaching Moderate marginal levels Demonstrate the understanding 2. Exam of the computation economics.

Applicable to students admitted before Semester A 2022/23 and in Semester A 2024/25 & thereafter

Applicable to students admitted from Semester A 2022/23 to Summer Term 2024

Assessment Task	Criterion	Excellent (A+, A, A-)	Good (B+, B)	Marginal (B-, C+, C)	Failure (F)
1. Homework assignments, discussions	Demonstrate the capability of understanding and applying computation economics.	High	Significant	Basic	Not even reaching
2. Exam	Demonstrate the understanding of the computation economics.				indiginal levels

Part III Other Information (more details can be provided separately in the teaching plan)

1. Keyword Syllabus

(An indication of the key topics of the course.)

Numerical dynamic programming; Projection methods for functional equations; Optimal control problems; Linear quadratic and linear approximation methods; Parameterized expectations; Heterogeneous agent models; Computation of stationary distributions; Numerical solution of overlapping generations models

2. Reading List

2.1 Compulsory Readings

(Compulsory readings can include books, book chapters, or journal/magazine articles. There are also collections of e-books, e-journals available from the CityU Library.)

1.	Heer, B. and Maussner, A. (2005) Dynamic General Equilibrium Modelling - Computational
	Methods and Applications. Springer.
2.	Judd, K. (1999) Numerical Methods in Economics. MIT.
3.	Kendrick, D., Mercado, P. and Amman, H. (2006) Computational Economics. Princeton.
4.	Miranda, M. and Fackler, P. (2002) Applied Computational Economics and Finance. MIT.

2.2 Additional Readings

(Additional references for students to learn to expand their knowledge about the subject.)

Nil