City University of Hong Kong Course Syllabus

offered by Department of Economics and Finance with effect from Semester A 2024/25

Part I Course Overview

Course Title:	Option Pricing
Course Code:	EF5210
Course Duration:	1 semester
Credit Units:	3
Level:	<u>P5</u>
Madium of	
Instruction:	English
Medium of	
Assessment:	English
Prerequisites:	
(Course Code and Title)	EF5050 Derivative and Risk Management
Precursors:	
(Course Code and Title)	EF5250 Stochastic Calculus for Finance
Equivalent Courses:	
(Course Code and Title)	Nil
Exclusive Courses:	
(Course Code and Title)	Nil

Part II Course Details

1. Abstract

This course aims to develop students' analytical and quantitative skills in derivatives pricing models.

2. Course Intended Learning Outcomes (CILOs)

(CILOs state what the student is expected to be able to do at the end of the course according to a given standard of performance.)

No.	CILOs	Weighting	Discov	very-eni	riched
		(if	curricu	ılum rel	ated
		applicable)	learnin	g outco	omes
			(please	e tick	where
			approp	riate)	
			Al	A2	A3
1.	Describe the idea of no-arbitrage pricing of options, and	-			
	assess its practicality in real market.				
2.	Explain a variety of option pricing models, and apply or	-			
	integrate the analytics to real market products.				
3.	Explain the key features of derivative products on different	-			
	asset classes.				
4.	Identify the pricing of nonstandard features in real-world	-			\checkmark
	exotic options, and design effective analytical and				
	numerical solutions.				
		-			

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to real-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

3.

Learning and Teaching Activities (LTAs) (LTAs designed to facilitate students' achievement of the CILOs.)

LTA	Brief Description		LO N	0.		Hours/week(if	
		1	2	3	4	applicable)	
Lectures and class	Students will engage in formal lecture		\checkmark			3 hours per week	
discussions	that will describe the idea of no-						
	arbitrage pricing of options, compare a						
	variety of option pricing models,						
	identify the key features of derivative						
	products on different asset classes, and						
	analyse the pricing of nonstandard						
	features in real-world exotic options,						
	and design effective analytical and						
	numerical solutions.						

4. Assessment Tasks/Activities (ATs)

(ATs are designed to assess how well the students achieve the CILOs.)

Assessment Tasks/Activities	CILO No.		Weighting	Remarks		
	1	2	3	4		
Continuous Assessment: 40 %						
Coursework (such as, assignments)	\checkmark				40 %	Students should be able to apply the analytics, and design numerical
						procedure.
Examination: <u>60</u> % (duration: 3	hour	s)				
					100%	

5. Assessment Rubrics

(Grading of student achievements is based on student performance in assessment tasks/activities with the following rubrics.)

Assessment Task	Criterion	Excellent (A+, A, A-)	Good (B+, B, B-)	Fair (C+, C, C-)	Marginal (D)	Failure (F)
1. Coursework (such as, assignments)	Demonstrate understanding the course materials by completing problem solving questions and exercise as assigned.	High	Significant	Moderate	Basic	Not even reaching marginal levels
2. Final Exam	Demonstrate the capability of mastering theories and models of option pricing and the capability of applying them in analysing various real-life options products.	High	Significant	Moderate	Basic	Not even reaching marginal levels

Applicable to students admitted before Semester A 2022/23 and in Semester A 2024/25 & thereafter

Applicable to students admitted from Semester A 2022/23 to Summer Term 2024

Assessment Task	Criterion	Excellent (A+, A, A-)	Good (B+ B)	Marginal (B- C+ C)	Failure (F)
1. Coursework (such as, assignments)	Demonstrate understanding the course materials by completing problem solving questions and exercise as assigned.	High	Significant	Basic	Not even reaching marginal levels
2. Final Exam	Demonstrate the capability of mastering theories and models of option pricing and the capability of applying them in analysing various real-life options products.	High	Significant	Basic	Not even reaching marginal levels

Part III Other Information (more details can be provided separately in the teaching plan)

1. Keyword Syllabus

(An indication of the key topics of the course.)

Exotic Options, American Options, Interest Rate Models, Risk Neutral Pricing, Numerical Methods in Derivatives pricing

2. Reading List

2.1 Compulsory Readings

(Compulsory readings can include books, book chapters, or journal/magazine articles. There are also collections of e-books, e-journals available from the CityU Library.)

1.	John C. Hull, Options, Futures, and Other Derivatives, Prentice Hall (ISBN 0-13-046592-5).
2.	P. Wilmott, Paul Wilmott Introduces Quantitative Finance, Wiley.

2.2 Additional Readings

(Additional references for students to learn to expand their knowledge about the subject.)