City University of Hong Kong Course Syllabus

offered by Department of Electrical Engineering with effect from Semester <u>A 2022/2023</u>

Part I Course Overview	v
Course Title:	Linear Systems Theory and Design
Course Code:	EE6620
Course Duration:	One Semester (13 weeks)
Credit Units:	3
	D.C.
Level: Medium of	P6
Instruction:	English
Medium of Assessment:	English
Prerequisites: (Course Code and Title)	Nil
Precursors: (Course Code and Title)	MA2170 Linear Algebra and Multi-variable Calculus, or EE3210 Signals and Systems, or EE3118 Linear Systems and Signal Analysis
Equivalent Courses:	Nil
(Course Code and Title) Exclusive Courses:	
(Course Code and Title)	EE5411 Linear Systems Theory and Design

Part II Course Details

1. Abstract

This course aims to introduce to students fundamental concepts, techniques, and tools in linear system analysis and design, required for a broad range of engineering disciplines including systems and control, signal processing, and communications.

2. Course Intended Learning Outcomes (CILOs)

(CILOs state what the student is expected to be able to do at the end of the course according to a given standard of performance.)

No.	CILOs	Weighting (if applicable)	curricu learnin	very-emulum relag outco e tick priate)	lated omes
			AI	A2	A3
1.	Recognise and determine system characteristics.		√	√	
2.	Describe and apply state-space modelling.		√	√	
3.	Implement the solution/response of linear dynamical systems.		√	√	
4.	Describe and apply controllability and observability to linear systems.		√	√	
5.	Apply state feedback and state estimator to engineering design.		√	√	√
6.	Apply stability of linear systems to modern engineering design.		√	√	√
		100%			

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to self-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

3. Teaching and Learning Activities (TLAs)

(TLAs designed to facilitate students' achievement of the CILOs.)

TLA	Brief Description	CIL	CILO No.					Hours/week (if
		1	2	3	4	5	6	applicable)
Lectures	Fundamental concepts, essential criteria, and key techniques are presented.	✓	✓	\	\	\	√	2 hrs/wk
Tutorials	Key concepts and techniques are strengthened by working on closely related problems.	√	√	√	√	√	√	1 hr/wk
Written assignments	Develop skills and strengthen understanding by problem solving	√	√	√	√	√	✓	
Case studies	Mini-projects for students to gain knowledge in contemporary research and practical problems.					√	√	

4. Assessment Tasks/Activities (ATs)

(ATs are designed to assess how well the students achieve the CILOs.)

Assessment Tasks/Activities	CILO No.						Weighting	Remarks
	1	2	3	4	5	6		
Continuous Assessment: 50%								
Tests (2)	✓	✓	✓	✓	✓	✓	30%	
#Assignments (min: 3)	✓	✓	✓	✓	✓	✓	20%	
Examination: 50% (duration: 2hrs , if applicable)								
Examination	✓	✓	✓	✓	✓	✓	50%	
							100%	

Remark:

To pass the course, students are required to achieve at least 30% in course work and 30% in the examination. # may include homework, tutorial exercise, project/mini-project, presentation

5. Assessment Rubrics

(Grading of student achievements is based on student performance in assessment tasks/activities with the following rubrics.)

Applicable to students admitted in Semester A 2022/23 and thereafter

Assessment Task	Criterion	Excellent (A+, A, A-)	Good (B+, B,)	Marginal (B-, C+, C)	Failure (F)
1. Examination	Achievements in CILOs	High	Medium	Low	Not even reaching marginal level
2. Coursework	Achievements in CILOs	High	Medium	Low	Not even reaching marginal level

Applicable to students admitted before Semester A 2022/23

Assessment Task	Criterion	Excellent (A+, A, A-)	Good (B+, B, B-)	Fair (C+, C, C-)	Marginal (D)	Failure (F)
1. Examination	Achievements in CILOs	High	Significant	Moderate	Basic	Not even reaching marginal level
2. Coursework	Achievements in CILOs	High	Significant	Moderate	Basic	Not even reaching marginal level

6. Constructive Alignment with Programme Outcomes

PILO	How the course contribute to the specific PILO(s)						
1, 2	The course will provide fundamental concepts and techniques required in the						
	modeling, analysis, and design of modern engineering systems in broad fields such						
	as control technology, communication systems, and signal processing algorithms.						
3, 4	Student will be able to analyze and design state feedback and state observers, and						
	consequently to analyze and design feedback systems using numerically efficient						
	state-space methods.						
5	The lectures will provide the necessary tools for students to access contemporary						
	research developments. The case studies will expose students to new research						
	frontiers.						
6,7	The case studies and presentation will provide students with the opportunity to work						
	as a team and to develop their communication skills.						

Part III Other Information (more details can be provided separately in the teaching plan)

1. **Keyword Syllabus**

Mathematical Systems Descriptions

Review of basic concepts, causality, stability, linearity, time-invariance, input-output description, state-space description, LTI systems, linearization.

Basic Mathematical Background

Linear space, vector norms, linear equations, linear transformation, eigenvalues and eigenvectors, canonical forms, matrix function, positive definite matrices, matrix induced norms.

Linear Dynamical Equations

Solution space, fundamental matrix, transition matrix, adjoint systems, equivalent systems.

Controllability and Observability

Controllability Gramian, rank test, PBH test, output controllability, observability Gramian, observability test, PBH test, duality, canonical forms, canonical decomposition, minimal realizations.

State Feedback and Observer

State feedback, pole placement, performance index, full-state observer, reduced state observer, separation principle, tracking and regulation.

Stability Analysis

Input-output stability, system induced norms, internal stability, Lyapunov stability, Lyapunov equation.

2. Reading List

2.1 Compulsory Readings

(Compulsory readings can include books, book chapters, or journal/magazine articles. There are also collections of e-books, e-journals available from the CityU Library.)

1	. •	C.T. Chen, Linear System theory and Design, 3rd Ed., Oxford Univ. Press, 1999

2.2 Additional Readings

(Additional references for students to learn to expand their knowledge about the subject.)

1.	T. Kailath, Linear Systems, Prentice Hall, 1980
2.	P. Antsaklis and A.N. Michel, Linear Systems, Springer, 2006.