City University of Hong Kong Course Syllabus

offered by Department of Electrical Engineering with effect from Semester <u>A in 2024/2025</u>

Part I Course Overviev	v
Course Title:	Complex Networks: Modeling, Dynamics and Control
Course Code:	EE6605
Course Duration:	One Semester (13 weeks)
Credit Units:	3
Level:	P6
Medium of Instruction:	English
Medium of Assessment:	English
Prerequisites: (Course Code and Title)	Nil
Precursors: (Course Code and Title)	MA3150 Advanced Mathematical Analysis or equivalent
Equivalent Courses: (Course Code and Title)	Nil
Exclusive Courses: (Course Code and Title)	Nil

Part II Course Details

1. Abstract

The aim of this course is to provide students with a good understanding of basic concepts, techniques and principles of complex networks: their modelling, dynamics and control.

2. Course Intended Learning Outcomes (CILOs)

(CILOs state what the student is expected to be able to do at the end of the course according to a given standard of performance.)

No.	CILOs	Weighting (if applicable)	curricu learnin (please approp		lated omes where
1.	Apply basic concepts to describe representative network		<i>A1</i> ✓	<i>A2</i> ✓	<i>A3</i> ✓
1.	models				
2.	Analyze the effects of network structures on dynamical		√	√	√
	behaviors				
3.	Estimate local and global network stability,		✓	√	
	synchronizability and controllability				
4.	Develop small-scale efficient virus-spreading control		√	✓	
	algorithms				
5.	Describe the control of data traffic flows and network		√	√	
	topological effect				
6.	Apply the learned techniques to solve some practical			√	√
	problems				
		100%			

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to real-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

3. Learning and Teaching Activities (LTAs)

(LTAs designed to facilitate students' achievement of the CILOs.)

LTA	Brief Description	CILO No.					Hours/week	
		1	2	3	4	5	6	(if applicable)
Lecture	Illustrate basic concepts	√	√	✓	✓	√		3 hrs/ week
	Demonstrate basic properties							
	Show typical applications							
Weekly	Illustrate basic concepts	✓	✓	✓	✓	✓		2 hrs/ week
homework	Demonstrate basic properties							
	Show typical applications							
Take-home	Initiate innovative ideas						√	
term project	Develop individual designs							
(4 weeks)	Perform computer programming							

4. Assessment Tasks/Activities (ATs)

(ATs are designed to assess how well the students achieve the CILOs.)

Assessment Tasks/Activities	CII	CILO No.					Weighting	Remarks
	1	2	3	4	5	6		
Continuous Assessment: 50%								
Tests (min.: 2)	√	√	✓	✓	✓	√	40%	One mid-term test and one end-term test
#Assignments (min.: 3)	✓	✓	✓	✓	✓		10%	
Examination: 50% (duration: 2	Examination: 50% (duration: 2hrs , if applicable)							
Examination	✓	✓	✓	✓	✓		50%	
	•	•	•	•	•	•	100%	

Remark:

To pass the course, students are required to achieve at least 30% in course work and 30% in the examination. # may include homework, tutorial exercise, project/mini-project, presentation

5. Assessment Rubrics

(Grading of student achievements is based on student performance in assessment tasks/activities with the following rubrics.)

Applicable to students admitted before Semester A 2022/23 and in Semester A 2024/25 & thereafter

Assessment Task	Criterion	Excellent (A+, A, A-)	Good (B+, B, B-)	Fair (C+, C, C-)	Marginal (D)	Failure (F)
1. Examination	Achievements in CILOs	High	Significant	Moderate	Basic	Not even reaching marginal level
2. Coursework	Achievements in CILOs	High	Significant	Moderate	Basic	Not even reaching marginal level

Applicable to students admitted from Semester A 2022/23 to Summer Term 2024

Assessment Task	Criterion	Excellent (A+, A, A-)	Good (B+, B,)	Marginal (B-, C+, C)	Failure (F)
1. Examination	Achievements in CILOs	High	Medium	Low	Not even reaching marginal level
2. Coursework	Achievements in CILOs	High	Medium	Low	Not even reaching marginal level

6. Constructive Alignment with Programme Outcomes

PILO	How the course contribute to the specific PILO(s)
1,2,3,4,5	Lecturing is the core of teaching. Reading materials will be suggested. One
	homework assignment will be given each week, for week 2 - week7. One large-
	scale computer project will be assigned for week 8 - week 12 to complete.
6	The take-home project requires self-motivated design and significant computer
	simulation demonstrating network science knowledge with clear real-world
	application background and implication. This project is research-oriented,
	requiring some new ideas and new techniques to complete.

Part III Other Information (more details can be provided separately in the teaching plan)

1. Keyword Syllabus

Network Structures and Properties

Recent advances in scientific literature including the complexity of models; degree distributions; random graphs; small-world features; scale-free properties; basic network modeling

Elementary Graph Theory

Basic concepts; elementary properties; typical algorithms; graph applications

Network Dynamics

Network dynamical behaviors; stability and synchronization; network game; community structures; opinion dynamics; evolving networks

Network Performances

Internet topology; data traffic; epidemics spreading; cascade failures

Network Synchronization and Control

Network synchronization phenomena and criteria; network stabilization and pinning_control; data traffic congestion control; network synchronizability and controllability

Potential Engineering Applications

Internet; power grids; transportation networks; social networks

Research-Oriented Computer project

A self-designed, self-performed and self-analyzed computer-programming project, using basic complex-network knowledge learned from the course

2. Reading List

2.1 Compulsory Readings

 $(Compulsory\ readings\ can\ include\ books,\ book\ chapters,\ or\ journal/magazine\ articles.$ There are also collections of e-books, e-journals available from the $CityU\ Library.)$

1.	Lecture Notes
----	---------------

2.2 Additional Readings

(Additional references for students to learn to expand their knowledge about the subject.)

1.	G. R. Chen, X. F. Wang and X. Li, Introduction to Complex Networks: Models, Structures and
	Dynamics, High Education Press, Beijing, China, January 2015
2.	X. F. Wang, X. Li and G. R. Chen, Network Science: An Introduction (in Chinese), High
	Education Press, Beijing, China, April 2012