City University of Hong Kong Course Syllabus

offered by Department of Electrical Engineering with effect from Semester <u>A 2022/2023</u>

Part I Course Overview	v
Course Title:	Fundamentals and Applications of Photonics
Course Code:	EE5436
Course Duration:	One Semester (13 weeks)
Credit Units:	3
Level:	P5
Medium of Instruction:	English
Medium of Assessment:	English
Prerequisites: (Course Code and Title)	Nil
Precursors: (Course Code and Title)	EE2104 Introduction to Electromagnetics
Equivalent Courses : (Course Code and Title)	Nil
Exclusive Courses: (Course Code and Title)	Nil

Part II Course Details

1. Abstract

The course aims to help the student to learn the basic principles of photonics technology, the most popular optical devices, and their applications in optical communication, next generation microprocessor, and biomedical sensing.

2. Course Intended Learning Outcomes (CILOs)

(CILOs state what the student is expected to be able to do at the end of the course according to a given standard of performance.)

No.	CILOs	Weighting	Discov		
		(if	curricu		
		applicable)	learnin	g outco	mes
			(please	tick	where
			approp	riate)	
			Al	A2	A3
1.	Explain the fundamental principles of photonic technology.				
2.	Apply electromagnetic theories to understand the working		V		
	principles of photonic components.				
3.	Independently design photonic devices for specific tasks.		1	\checkmark	
4.	Identify the applications of different photonic devices.		1	1	
5.	Perform independent studies to identify future		1		
	developments of photonic technologies.				
		100%		•	

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to self-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

3. Teaching and Learning Activities (TLAs)

(TLAs designed to facilitate students' achievement of the CILOs.)

TLA	Brief Description		O No.	Hours/week (if				
		1	2	3	4	5		applicable)
Lecture	Fundamental theories, important	V		V				2 hrs/wk
	concepts and major applications							(for 11 weeks)
	of photonic devices.							
Tutorial	Work out important concepts	1		V				1 hr/wk
	based on problems and							(for 11 weeks)
	discussions							
Project	Research selected photonic							3 hr/wk
	technology topics and provide							(for 2 weeks)
	independent evaluations.							

4. Assessment Tasks/Activities (ATs)

(ATs are designed to assess how well the students achieve the CILOs.)

Assessment Tasks/Activities	CILO No.					Weighting	Remarks
	1	2	3	4	5		
Continuous Assessment: 60%							
Tests (min.: 2)	$\sqrt{}$					35%	
#Assignments (min.: 3)						25%	
Examination: 40% (duration: 2	hrs	, if a	pplic	able)			
Examination						40%	
	•					100%	

Remark:

To pass the course, students are required to achieve at least 30% in course work and 30% in the examination. # may include homework, tutorial exercise, project/mini-project, presentation

5. Assessment Rubrics

(Grading of student achievements is based on student performance in assessment tasks/activities with the following rubrics.)

Applicable to students admitted in Semester A 2022/23 and thereafter

Assessment Task	Criterion	Excellent (A+, A, A-)	Good (B+, B,)	Marginal (B-, C+, C)	Failure (F)
1. Examination	Achievements in CILOs	High	Medium	Low	Not even reaching marginal level
2. Coursework	Achievements in CILOs	High	Medium	Low	Not even reaching marginal level

Applicable to students admitted before Semester A 2022/23

Assessment Task	Criterion	Excellent	Good	Fair	Marginal	Failure
		(A+, A, A-)	(B+, B, B-)	(C+, C, C-)	(D)	(F)
1. Examination	Achievements i CILOs	n High	Significant	Moderate	Basic	Not even reaching marginal level
2. Coursework	Achievements i CILOs	n High	Significant	Moderate	Basic	Not even reaching marginal level

6. Constructive Alignment with Programme Outcomes

PILO	How the course contribute to the specific PILO(s)
1, 2, 3	Students are required to apply the fundamental theoretical knowledge and analytical skills for an in-depth understanding of the working principles and applications of photonic technologies.
4	Students are required to complete an independent research study on new developments of photonic technologies.
6	Students are required to give an oral presentation of their independent research studies.

Part III Other Information (more details can be provided separately in the teaching plan)

1. Keyword Syllabus

Ray Optics

- Basic concepts of ray optics: refraction, reflection, Snell's law, total internal reflection
- Basic optical components: mirrors, prisms, lenses
- Transfer matrix method

Wave and Beam Optics

- Electromagnetic theory of light
- Polarization states of light
- Absorption, dispersion, phase and group velocity
- Gaussian beam, beam shaping components

Guided-Wave Optics

- Planar mirror waveguides
- Planar dielectric waveguides, 2D dielectric waveguides, effective index theory
- Coupled-mode theory

Integrated Photonics

- Basic integrated photonic waveguides: rib, ridge waveguides
- Arrayed-waveguide gratings, Mach-Zehnder interferometers, waveguide tapers

Resonator Optics

- Fabry-Perot resonators
- Microring resonators, microring-based filters

Nonlinear Optics & Electro-Optics

- Basic principles and concepts of nonlinear optics
- Theory of second harmonic generation
- Theory and applications of electro-optic modulation

Plasmonics & Metasurfaces

- Surface plasmon resonances on metal films, local surface plasmons
- Applications of surface plasmon resonances in biosensing and Raman spectroscopy
- Introduction to metasurfaces, metalens and holography

2. Reading List

2.1 Compulsory Readings

(Compulsory readings can include books, book chapters, or journal/magazine articles. There are also collections of e-books, e-journals available from the CityU Library.)

1. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, Wiley, 1990

2.2 Additional Readings

(Additional references for students to learn to expand their knowledge about the subject.)

1.	A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications, 6th
	Edition, Oxford University Press, 2007.
2.	L. Novotny and B. Hecht, Principles of Nano-Optics, Cambridge University Press, 2012.