City University of Hong Kong Course Syllabus

offered by Department of Chemistry with effect from Semester A 2024/25

Part I Course Overview

Course Title:	Advanced Organic Chemistry
Course Code:	CHEM8131
Course Duration:	1 semester
Credit Units:	4 credits
Level:	R8
Medium of Instruction:	English
Medium of Assessment:	English
Prerequisites : (Course Code and Title)	Nil
Precursors : (Course Code and Title)	Nil
Equivalent Courses : <i>(Course Code and Title)</i>	BCH8131 Advanced Organic Chemistry
Exclusive Courses : (Course Code and Title)	Nil

Part II Course Details

1. Abstract

This course aims to:

- introduce organic chemistry of aldol reactions and enolate anions;
- explain the structures and reactions of carbohydrates and lipids;
- introduce basic strategies of multi-step organic syntheses;
- explain conformational, steric, and stereoelectronic effects of organic molecules;
- critically evaluate organic reaction mechanisms;
- develop knowledge of nucleophilic substitution reaction.

2. Course Intended Learning Outcomes (CILOs)

No.	CILOs [#]	Weighting	Discov	very-em	riched
		(if	curricu	lum re	lated
		applicable)	learnin	ig outco	omes
			Al	A2	A3
1.	Describe the concepts and basic principles of aldol		\checkmark	\checkmark	
	reactions and enolate anions; describe the principles of				
	chemistry in carbohydrates and lipids.				
2.	Apply the strategies and principles in multi-step organic		\checkmark	\checkmark	\checkmark
	syntheses.				
3.	Compare and contrast conformational, steric, and		\checkmark	\checkmark	
	stereoelectronic effects of organic molecules.				
4.	Apply various techniques in studying organic reaction		\checkmark	\checkmark	\checkmark
	mechanisms.				
5.	Explain various factors affecting nucleophilic substitution		\checkmark	\checkmark	
	reactions.				
		100%			

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to self-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

3. Learning and Teaching Activities (LTAs)

LTA	Brief Description		LOI	No.			Hours/week
		1	2	3	4	5	(if applicable)
Lectures and tutorials	Students will learn the concept of enolate, the principles of aldol reaction, and the structures and reactions of carbohydrates and lipids through discovery-based teaching and learning activities in lectures and	\checkmark					
T (1	tutorials.		\checkmark				
Lectures and tutorials	Students will learn basic strategies of multi-step organic syntheses through discovery-based teaching and learning activities in lectures and tutorials.		V				
Lectures and tutorials	Students will learn the conformational, steric, and stereoelectronic effects of organic molecules through discovery-based teaching and learning activities in lectures and tutorials.			V			
Lectures and tutorials	Students will learn basic concepts and principles of modern techniques used in studying organic reaction mechanisms through discovery-based teaching and learning activities in lectures and tutorials.				~		
Lectures and tutorials	Students will learn various factors affecting nucleophilic substitution reactions through discovery-based teaching and learning activities in lectures and tutorials.					~	

4. Assessment Tasks/Activities (ATs)

Assessment Tasks/Activities	CILO No.			No.		Weighting	Remarks
	1	2	3	4	5		
Continuous Assessment: <u>30</u> %							
Short Quizzes	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	30%	
Examination: <u>70</u> % (duration: 3 hours)							
						100%	

Starting from Semester A, 2015-16, students must satisfy the following minimum passing requirement for courses offered by CHEM:

"A minimum of 40% in both coursework and examination components."

5. Assessment Rubrics

Applicable to students admitted before Semester A 2022/23 and in Semester A 2024/25 & thereafter

Assessment Task	Criterion	Excellent (A+, A, A-)	Good (B+, B, B-)	Fair (C+, C, C-)	Marginal (D)	Failure (F)
1. Short Quizzes	Ability to explain chemical reaction/reactivity based on the knowledge of organic chemistry listed in section 3.	High	Significant	Moderate	Basic	Not even reaching marginal levels
2. Examination	Ability to propose practical solutions/methods to new organic chemical transformation; ability to explain the mechanism of organic chemical reaction.	High	Significant	Moderate	Basic	Not even reaching marginal levels

Applicable to students admitted from Semester A 2022/23 to Summer Term 2024

Assessment Task	Criterion	Excellent (A+, A, A-)	Good (B+, B)	Marginal (B-, C+, C)	Failure (F)
1. Short Quizzes	Ability to explain chemical reaction/reactivity based on the knowledge of organic chemistry listed in section 3.	High	Significant	Basic	Not even reaching marginal levels
2. Examination	Ability to propose practical solutions/methods to new organic chemical transformation; ability to explain the mechanism of organic chemical reaction.	High	Significant	Basic	Not even reaching marginal levels

Part III Other Information

1. Keyword Syllabus

- aldol reactions and enolate anions: keto and enol tautomers, crossed aldol reaction, cyclization via aldol condensation, Michael addition, Robinson annulation
- carbohydrates and lipids: mutarotation, monosaccharide, alditol, osazone, disaccharide, polysaccharide, reducing sugar vs non-reducing sugar, fatty acids and triacylglycerols, terpenes and terpenoids, steroids, prostagladins, phospholipids and cell membranes, waxes
- multi-step organic syntheses: protective group, synthetic analysis and planning, retrosynthetic analysis, control of stereochemistry, convergent and linear synthesis
- conformational, steric, and stereoelectronic effects: steric strain, heteroatom, angle strain, conformational analysis, axial vs equatorial
- organic reaction mechanisms: kinetic vs thermodynamic control, substituent effect, isotope effect, solvent effect, catalysis
- nucleophilic substitution reaction: Sn1 vs Sn2 reaction, carbocations, nucleophilicity, leaving group effects, neighboring-group participation, rearrangement

2. Reading List

2.1 Compulsory Readings

1.	
2.	
3.	

2.2 Additional Readings

1.	Organic Chemistry, T.W.G. Solomons (John Wiley and Sons, 7th or 8th edition)
2.	Advanced Organic Chemistry, F. A. Carey and R. J. Sundberg
3.	