City University of Hong Kong Course Syllabus

offered by Department of Chemistry with effect from Semester A 2024/25

Part I Course Overview

Course Title:	Chemical Safety and Advanced Instrumentation for Research
Course Code:	CHEM8011M
Course Duration:	1 semester
Credit Units:	2 credits
Level:	R8
Medium of Instruction:	English
Medium of Assessment:	English
Prerequisites: (Course Code and Title)	Nil
Precursors: (Course Code and Title)	Nil
Equivalent Courses : (Course Code and Title)	BCH8011M Chemical Safety and Advanced Instrumentation for Research
Exclusive Courses: (Course Code and Title)	Nil

1

Part II Course Details

1. Abstract

The course will enable students to develop their knowledge and capability in conducting risk assessment and dealing with the chemical safety issues in the research laboratory. Students will also be able to discover for themselves how selected advanced and widely used research techniques and instrumental methods in chemistry can be applied to their own research studies.

2. Course Intended Learning Outcomes (CILOs)

No.	CILOs#	Weighting	Discov	ery-eni	riched
		(if	curricu	ılum rel	lated
		applicable)	learnin	ig outco	omes
			AI	A2	A3
1.	Identify different types of chemical hazards	21%	✓		
2.	Conduct risk assessment in their research project and	33%	✓	✓	✓
	laboratory				
3.	Demonstrate an understanding of the basic concepts and working principles of the selected spectroscopic techniques	24%	√	√	
4.	Apply different spectroscopic techniques in their research project	22%	✓	✓	√
		100%		•	•

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to self-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

3. Learning and Teaching Activities (LTAs)

LTA	Brief Description	CILO No.				Hours/week (if
		1	2	3	4	applicable)
Lectures	Students will learn key concepts of	√	✓	√	✓	14
	the course, such as organic					
	spectroscopy, types of chemical					
	hazards and chemical risk					
	assessment.					
Independent	Students will conduct risk	✓	✓	✓		14
Studies	assessments on their research					
	projects/experiments.					
Assignment	Students will work on an		✓	✓	✓	6
	assignment that requires the					
	application of various					
	spectroscopic techniques for					
	chemical identification and					
	characterization.					
Group	Students will be engaged in group	✓	✓		√	12
Discussions	discussions to critically assess					
	hazards in the experiments and					
	discuss procedures that minimize					
	the risks.					

4. Assessment Tasks/Activities (ATs)

Assessment Tasks/Activities	CII	CILO No.		Weighting	Remarks	
	1	2	3	4]	
Continuous Assessment: 100%						
Written Assignment		✓	✓		40%	
Oral Presentation	✓	✓		√	30%	
Attendance	✓	✓		√	30%	
Examination: <u>0</u> % (duration:)						
					100%	

Students are required to submit all assignments and the risk assessments of their research laboratory and experiments to their supervisors and ALERT lab managers. Students are also required to present their major types of experimental procedures related to their research project and the corresponding risk assessment in the group meetings. Students are also required to attend all group meetings.

Starting from Semester A, 2015-16, students must satisfy the following minimum passing requirement for courses offered by CHEM:

"A minimum of 40% in both coursework and examination components."

5. Assessment Rubrics

Applicable to students admitted before Semester A 2022/23 and in Semester A 2024/25 & thereafter

Assessment Task	Criterion	Excellent (A+, A, A-)	Good (B+, B, B-)	Fair (C+, C, C-)	Marginal (D)	Failure (F)
1. Written Assignment	Ability to apply various spectroscopic techniques for chemical identification and characterization.	High	Significant	Moderate	Basic	Not even reaching marginal levels
2. Report / Oral Presentation	Ability to conduct risk assessment on their research projects/experiments.	High	Significant	Moderate	Basic	Not even reaching marginal levels
3. Attendance/ Discussion	Ability to critically assess hazards in the experiments and discuss procedures that minimize the risks.	High	Significant	Moderate	Basic	Not even reaching marginal levels

Applicable to students admitted from Semester A 2022/23 to Summer Term 2024

Assessment Task	Criterion	Excellent	Good	Marginal	Failure
		(A+, A, A-)	(B+, B)	(B-, C+, C)	(F)
1. Written Assignment	Ability to apply various spectroscopic techniques for chemical identification and characterization.	High	Significant	Basic	Not even reaching marginal levels
2. Report / Oral Presentation	Ability to conduct risk assessment on their research projects/experiments.	High	Significant	Basic	Not even reaching marginal levels
3. Attendance/ Discussion	Ability to critically assess hazards in the experiments and discuss procedures that	High	Significant	Basic	Not even reaching marginal levels

	minimize the risks		
	minimize the more.		

Part III Other Information

Keyword Syllabus 1.

- Chemical Safety
- Risk assessment
- Chemical instrumentation

2. Reading List2.1 Compulsory Readings

1.	
2.	
3.	

2.2 Additional Readings

1.	Principles of instrumental analysis, 6th ed. (Eds: D. A. Skoog, F. J. Holler, S. R. Crouch),
	Thomson, 2007
2.	Spectrometric Identification of Organic Compounds, 7th ed. (Eds.:R. M. Silverstein, F. X.
	Webster, D. J. Kiemle), Wiley, Hoboken, 2005
3.	Chemical safety in the laboratory (Ed: S. K. Hall) Boca Raton, Lewis, 1994
4.	Chemical safety matters, (IUPAC), Cambridge University Press, Cambridge, 1992