City University of Hong Kong Course Syllabus

offered by Department of Chemistry with effect from Semester A 2024/25

Part I Course Overview

Course Title:	Advanced Neurobiology
Course Code:	CHEM8009
Course Duration:	1 semester
Credit Units:	4 credits
Level:	R8
Medium of Instruction:	English
Medium of Assessment:	English
Prerequisites : (Course Code and Title)	Nil
Precursors : (Course Code and Title)	Nil
Equivalent Courses : <i>(Course Code and Title)</i>	BCH8009 Advanced Neurobiology
Exclusive Courses: (Course Code and Title)	Nil

1. Abstract

This course aims to provide a solid foundation in the field of neurobiology at cellular and organismal levels, and the concepts of integrative neurobiology. This is targeted for graduate students who are interested in professional fields in animal and human neurophysiology, research, and medicine or veterinary sciences. Students are encouraged to build broad and strong academic foundations and are urged not to specialize too heavily.

- *Neuroanatomy*: structure and function of nervous system
- Cellular neurophysiology: synapses, and circuits
- *Systems neuroscience*: integration of molecular mechanisms, anatomical circuits, and behavioral analysis to understand function of neural systems
- Fundamental topics in biological neuroscience: Brain-generated learning and memory Pain and pleasure Satiety and obesity

2. Course Intended Learning Outcomes (CILOs)

No.	CILOs#	Weighting (if applicable)		very-enr llum rel	ated
		upplicuole)	Al	A2	A3
1.	Describe the anatomy of central and peripheral nervous system at cellular, histological and regional systems levels.	20%			
2.	Describe the circuitry and neurochemistry of the vagus nerve and major brain regions.	20%			
3.	Explain the action potential and membrane potentials, channels and channel blockers, synaptic receptors, transmitter release, and sensory transduction.	30%			
4.	General overview to discover how the brain generates learning and memory, what is consciousness and why do we have pain and pleasure.	30%			
	· · · ·	100%		•	

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to self-life problems.

A3: Accomplishments Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

3. Learning and Teaching Activities (LTAs)

LTA	Brief Description		No.	Hours/week (if		
	-		2	3	4	applicable)
Lectures,	Students will learn neuronal	\checkmark				
tutorials and	anatomy (rat) in lectures, tutorials,					
laboratory	and small group laboratory					
demonstrations	demonstrations.					
Lectures,	Students will learn brain and vagal		\checkmark			
tutorials and	nerve that regulate gastric or					
laboratory	pancreatic functions in lectures,					
demonstrations	tutorials, and small group laboratory					
	demonstrations.					
Lectures,	Lectures, tutorials and small group			\checkmark		
tutorials and	laboratory practices to perform					
laboratory	electrical physiological recordings.					
practices	The students will report their					
	findings.					
Lectures,	Lectures and tutorials, in which				\checkmark	
tutorials,	internet resources and literature will					
written reports,	be reviewed. Students will evaluate,					
oral	discuss, and present their findings in					
presentations	the form of written reports and oral					
	presentations.					

4. Assessment Tasks/Activities (ATs)

Assessment Tasks/Activities	CILO No.		Weighting	Remarks		
	1	2	3	4		
Continuous Assessment: 60%						
Short Quizzes	\checkmark	\checkmark	\checkmark	\checkmark	20%	
Tutorial Discussion	\checkmark	\checkmark	\checkmark	\checkmark	20%	
Lab Practice/ Report			\checkmark		10%	
Oral Presentation				\checkmark	10%	
Examination: <u>40</u> % (duration: 2 hours)						•
					100%	

Starting from Semester A, 2015-16, students must satisfy the following minimum passing requirement for courses offered by CHEM:

"A minimum of 40% in both coursework and examination components."

5. Assessment Rubrics

Applicable to students admitted before Semester A 2022/23 and in Semester A 2024/25 & thereafter

Assessment Task	Criterion	Excellent (A+, A, A-)	Good (B+, B, B-)	Fair (C+, C, C-)	Marginal (D)	Failure (F)
1. Short Quizzes						
2. Tutorial Discussion						
3. Lab Practice/ Report						
4. Oral Presentation	1					
5. Examination						

Applicable to students admitted from Semester A 2022/23 to Summer Term 2024

Assessment Task	Criterion	Excellent (A+, A, A-)	Good (B+, B)	Marginal (B-, C+, C)	Failure
1. Short Quizzes		(A ⁺ , A, A ⁻)	(D ⁺ , D)	(B-, C+, C)	(F)
2. Tutorial Discussion					
3. Lab Practice/ Report					
4. Oral Presentation					
5. Examination					

Part III Other Information

1. Keyword Syllabus

- The basic structure features of nervous system
- Cellular neurophysiology: neurons, synapses, electrotonic properties, neurotransmitters, receptors, long-term potentiation
- Systems neuroscience: sensory, motor system, autonomic function and behavioral analysis
- Brain-generated learning and memory, pain perception

2. Reading List

2.1 Compulsory Readings

1.	
2.	
3.	

2.2 Additional Readings

1.	Michael J. Zigmond (1999), Fundamental Neuroscience (2th edition) Academic Press USA
2.	
3.	