City University of Hong Kong Course Syllabus

offered by Department of Architecture and Civil Engineering with effect from Semester A 2024 / 2025

Part I Course Overview	N .
Course Title:	Plasticity
Course Code:	CA8026
Course Duration:	1 Semester (Some courses offered in Summer Term may start a few weeks earlier than the normal University schedule. Please check the teaching schedules with CLs before registering for the courses.)
Credit Units:	3
Level:	R8
Medium of Instruction:	English
Medium of Assessment:	English
Prerequisites: (Course Code and Title)	Nil
Precursors: (Course Code and Title)	Nil
Equivalent Courses : (Course Code and Title)	Nil
Exclusive Courses: (Course Code and Title)	Nil

Part II Course Details

1. Abstract

The course intends to provide students with knowledge on mathematical formulation of the constitutive laws of plasticity; yield criteria and their experimental verification; plastic stress-strain relations and their associated flow rules; correspondence between rate-independent and rate-dependent plasticity; solutions to basic boundary-value problems, including plane problems and those involving cylindrical and spherical symmetries; variational and minimum principles; limit analysis; plane-strain problems and crystal plasticity; finite-strain theory.

2. Course Intended Learning Outcomes (CILOs)

No.	CILOs	Weighting		ery-eni	
		(if	curricu	ılum rel	ated
		applicable)	learnin	g outco	mes
			(please	tick	where
			approp	riate)	
			Al	A2	A3
1.	learn and discover fundamental principles of plasticity to	25%	√		
	analyze and design structural members under axial load,				
	shear load, bending moment and torsional moment				
2.	model and analyze the plastic behavior of structural	25%		√	
	components subjected to various loading				
3.	discover appropriate approximation to solve plastic	25%		√	
	boundary-value problems of structures				
4.	discover the advanced topics in plastic mechanics, variation	25%		√	
	principles, and nonlinear analysis of plates and shells				
	•	100%			

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to real-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

3. Learning and Teaching Activities (LTAs)

LTA	Brief Description		CILO No.			Hours/week
		1	2	3	4	(if applicable)
Lecture	Address the basic principles and theories for	✓	√	√	√	2
	Plastic Mechanics					hours/week
Tutorial	Explain how to get the solutions of plastic	√	√	√	√	1
	rods, beams and plates					hour/week

Semester Hours:	3 hours per week
Lecture/Tutorial/Laboratory Mix:	Lecture (2); Tutorial (1); Laboratory (0)

4. Assessment Tasks/Activities (ATs)

Assessment Tasks/Activities	CILO No.		Weighting	Remarks		
	1	2	3	4		
Continuous Assessment: 50%						
Assignment	✓	√	√	>	30%	
Mid-term test		√			20%	
Examination: 50% (duration: 2 hour(s))						
Examination					50%	
					100%	

To pass a course, a student must obtain minimum marks of 30% in both coursework and examination components, and an overall mark of at least 40%

5. Assessment Rubrics

Applicable to students admitted before Semester A 2022/23 and in Semester A 2024/25 & thereafter

Assessment Task	Criterion	Excellent	Good	Fair	Marginal	Failure
		(A+, A, A-)	(B+, B, B-)	(C+, C, C-)	(D)	(F)
Assignment	ABILITY to Use plasticity to do extreme design of rods and beams in structural engineering	High	Significant	Moderate	Basic	Not even reaching marginal levels
Mid-term test	ABILITY to APPLY the basic principle and the scientific techniques in solving the plastic rods, beams and plates	High	Significant	Moderate	Basic	Not even reaching marginal levels
Examination	CAPACITY to UNDERSTAND the mathematical theories and USE them in solving an engineering problem	High	Significant	Moderate	Basic	Not even reaching marginal levels

Applicable to students admitted from Semester A 2022/23 to Summer Term 2024

Assessment Task	Criterion	Excellent	Good	Marginal	Failure
		(A+, A, A-)	(B+, B)	(B-, C+, C)	(F)
Assignment	ABILITY to Use plasticity to do	High	Significant	Basic	Not even reaching
	extreme design of rods and beams				marginal levels
	in structural engineering				
Mid-term test	ABILITY to APPLY the basic	High	Significant	Basic	Not even reaching
	principle and the scientific				marginal levels
	techniques in solving the plastic				
	rods, beams and plates				
Examination	CAPACITY to UNDERSTAND	High	Significant	Basic	Not even reaching
	the mathematical theories and				marginal levels
	USE them in solving an				
	engineering problem				

Part III Other Information

1. Keyword Syllabus

Phenomenological and mathematical formulation of the constitutive laws of plasticity; yield criteria and their experimental verification; plastic stress-strain relations and their associated flow rules; correspondence between rate-independent and rate-dependent plasticity; solutions to basic boundary-value problems, including plane problems and those involving cylindrical and spherical symmetries; variational and minimum principles; limit analysis; plane-strain problems and crystal plasticity; finite-strain theory.

2. Reading List

2.1 Compulsory Readings

1.	Han, WM & Reddy, BD 2013, Plasticity: mathematical theory and numerical analysis, 2nd edn,
	Springer, New York.
2.	Salençon J 2013, Yield design, ISTE Ltd, London.

2.2 Additional Readings

1.	Shabana AA 2012, Computational continuum mechanics, 2nd edn, Cambridge University
	Press, Cambridge.