City University of Hong Kong Course Syllabus

offered by Department of Biomedical Sciences with effect from Semester A 2022/2023

Part I Course Overv	view
Course Title:	Frontiers in Biomedical Research
Course Code:	BMS8102
Course Duration:	One semester
Credit Units:	_2
Level:	R8
Medium of Instruction:	English
Medium of Assessment:	English
Prerequisites: (Course Code and Title)	Nil
Precursors: (Course Code and Title)	Nil
Equivalent Courses: (Course Code and Title)	Nil
Exclusive Courses: (Course Code and Title)	Nil

Part II Course Details

1. Abstract

This is an advanced course on a variety of topics in biomedical sciences, with examples including cutting edge scientific discoveries and advanced techniques for modern biomedical sciences research. Advanced seminars will be given by a group of lecturers. The topics will be announced in advance when this course is offered. It will cover a broad range of topics and serve as a useful supplement to the specialized advanced courses existing in the programme.

This course aims to enable the students to achieve the following objects:

- Identify and explain, to an appropriate extent, the real-world and technological importance/relevance of the subject matters;
- Describe the selected experimental and theoretical principles of Biomedical Sciences and its applied ramifications;
- · Apply such principles to phenotypical and analytical studies in Biomedical Sciences; and
- Compare and relate the selected topics and generate conceptual links between different research fields, in order to establish a broader perspective on these foundational topics.

2. Course Intended Learning Outcomes (CILOs)

No.	CILOs#	Weighting	Discov	ery-	
		(if	enriche	ed	
		applicable)	curricu	ılum re	lated
			learnin	g outco	omes
			AI	A2	A3
1.	Carry out basic analysis of the concepts and seminal				
	discoveries in the selected areas of modern biomedical			✓	
	sciences.				
2.	Select or design suitable approaches for carrying out a			1	
	critical study of a research subject.			•	
3.	Critically evaluate experiments/processes/outcomes in the				
	selected topics and in the literatures and effectively relate			✓	
	these knowledges to one's special study field.				
4.	Identify the scientific and social impacts of technologies		./		
	in biomedical sciences.		•		
		100%			

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to self-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

3. Teaching and Learning Activities (TLAs)

TLA	Brief Description	CILO No.		Hours/week		
		1	2	3	4	(if applicable)
Lecture, tutorial	Teaching and learning will be discovery- based relying on a combination of lectures and discussions to elucidate the approaches	√	√	√	√	
	of modern biomedical sciences research and its technological impacts.					

The TLAs provided above are indicative of the likely activities that students will undertake in this course. Final details of the individual course components, including large and small group teaching sessions, case studies, discussions and oral presentations, will be provided in the student course documents distributed at the commencement of the course.

4. Assessment Tasks/Activities (ATs)

Assessment Tasks/Activities	CII	CILO No.		Weighting	Remarks	
	1	2	3	4		
Continuous Assessment: 100%						
Attendance and class discussions				✓	20%	
Final report	✓	√	✓	✓	80%	
Examination: 0%						
·					1000/	

100%

5. Assessment Rubrics

Applicable to students admitted in Semester A 2022/23 and thereafter

Assessment Task	Criterion	Excellent	Good	Marginal	Failure
		(A+, A, A-)	(B+, B)	(B-, C+, C)	(F)
Assignments	Knowledge, processes and	Outstanding	Substantial performance	Satisfactory	Unsatisfactory
including critical	technologies covered in class,	performance on all	on all CILOS. Evidence	performance on the	performance on a
review and analysis	and the implications in modern	CILOs. Strong evidence	of grasp of subject, some	majority of CILOS	number of CILOS.
of particular subject	biomedical research;	of original thinking;	evidence of critical	possibly with a few	Failure to meet specified
	Usage of the information and	good organization,	capacity and analytic	weaknesses. Being able	assessment
	literature sources;	capacity to analyse and	ability; reasonable	to profit from the course	requirements, little
	Understanding major current	synthesize; superior	understanding of issues;	experience;	evidence of familiarity
	topics in the literature	grasp of subject matter;	evidence of familiarity	understanding of the	with the subject matter;
	regarding the selected topics;	evidence of extensive	with literature.	subject; ability to	weakness in critical and
	Performance in teacher-student	knowledge base.		develop solutions to	analytic skills; limited or
	interaction, which requires the			simple problems in the	
	student to critically evaluate			material.	
	the research topics.				

Applicable to students admitted before Semester A 2022/23

Assessment Task	Criterion	Excellent	Good	Fair	Marginal	Failure
		(A+, A, A-)	(B+, B, B-)	(C+, C, C-)	(D)	(F)
Assignments	Knowledge, processes and	Outstanding	Substantial	Satisfactory	Barely	Unsatisfactory
including critical	technologies covered in class,	performance on	performance on	performance on	satisfactory	performance on a
review and	and the implications in modern	all CILOs. Strong	all CILOS.	the majority of	performance on a	number of
analysis of	biomedical research;	evidence of	Evidence of	CILOS possibly	number of	CILOS. Failure
particular subject	Usage of the information and	original thinking;	grasp of subject,	with a few	CILOS.	to meet specified
	literature sources;	good	some evidence of	weaknesses.	Sufficient	assessment
	Understanding major current	organization,	critical capacity	Being able to	familiarity with	requirements,
	topics in the literature regarding	capacity to	and analytic	profit from the	the subject matter	little evidence of
	the selected topics;	analyse and	ability;	course	to enable the	familiarity with
	Performance in teacher-student	synthesize;	reasonable	experience;	student to	the subject
	interaction, which requires the	superior grasp of	understanding of	understanding of	progress without	matter; weakness
	student to critically evaluate the	subject matter;	issues; evidence	the subject;	repeating the	in critical and
	research topics.	evidence of	of familiarity	ability to develop	course.	analytic skills;
		extensive	with literature.	solutions to		limited or
		knowledge base.		simple problems		irrelevant use of
				in the material.		literature

Part III Other Information

1. Keyword Syllabus

- i) Biomedical sciences and the society
- ii) Industrial, biological and environmental importance of biomedical sciences
- iii) Biotechnology

2. Reading List

2.1 Compulsory Readings

Nil

2.2 Additional Readings

Nil