Course Syllabus

offered by Department of Biomedical Sciences with effect from Semester B 2023/24

Part I Course Overview

Course Title:	Fundamental and Advanced Multi-omics Research					
Course Code:	BMS5008					
Course Duration:	One semester					
Credit Units:	3					
Level:	5					
Medium of Instruction:	English					
Medium of Assessment:	English					
Prerequisites : (Course Code and Title)	NIL					
(Course Coue and Thie)						
Precursors :	NII					
(Course Code and Tille)	NIL					
Equivalent Courses:	NU					
(Course Code and Title)	NIL					
Exclusive Courses:						
(Course Code and Title)	NIL					

Part II Course Details

1. Abstract

The course aims to provide lectures and practice to help students to understand the principles and applications of various -omics approaches. Topics include (1) principles of sequencing and commonly used sequencing platforms; (2) Genome sequencing transcriptome sequencing and their road applications; (3) Epigenetic modifications and regulation; (3) Transcriptional and post-transcriptional regulation; (4) Advances of proteomics and challenges; (5) Integrative data analyses and comprehensive functional genomics; (6) Gene editing, genome manipulation, emerging challenges during medical and therapeutic implementations (7) Novel inter-disciplinary and data-driven sciences. In all topics, special attention will be paid to building a fundamental understanding of omics research and applying knowledge to approach biological questions.

2. Course Intended Learning Outcomes (CILOs)

(CILOs state what the student is expected to be able to do at the end of the course according to a given standard of performance.)

			1		
No.	CILOs	Weighting	Discov	very-en	riched
		(if	curricu	ilum rel	lated
		applicable)	learnin	ng outco	omes
			(please	tick	where
			approp	oriate)	
			A1	A2	A3
1.	Understand fundamental concepts of sequencing	40	✓	\checkmark	
	technology, and know the difference between distinct				
	sequencing platforms, and their capacity and applications				
	in various research scenarios.				
2.	Understand the advantages and disadvantages of commonly	30	✓	\checkmark	\checkmark
	used assays in projects that use omics approaches. Able to				
	determine/apply assays to appropriately capture the desired				
	features given certain samples.				
3.	Build essential skills to evaluate the quality and merits of	30		\checkmark	\checkmark
	recent multi-omic research via critical thinking, and				
	simultaneously gain the ability to design or improve				
	experiments.				
	· · · · ·	100%		•	
			-		

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to self-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

3.

Teaching and Learning Activities (TLAs) (*TLAs designed to facilitate students' achievement of the CILOs.*)

TLA	Brief Description	CIL	CILO No.		Hours/week (if applicable)
		1	2	3	
Lectures	Lecture introduction on course content	✓	~	~	
Tutorial	To give oral presentation on a certain topic for case study	✓	~	~	

4. Assessment Tasks/Activities (ATs)

(ATs are designed to assess how well the students achieve the CILOs.)

Assessment Tasks/Activities	CILO No.		0.	Weighting	Remarks
	1	2	3		
Continuous Assessment: 60 %					
Assignment	✓	✓	✓	40%	
Attendance	\checkmark	✓	✓	20%	Lectures and tutorial sessions
Examination: 40%					
(Duration: 2 hours; covering stud	lies fr	om 1	-13 v	veeks study)	
				100%	

Course Syllabus Nov 2021

5. Assessment Rubrics

(Grading of student achievements is based on student performance in assessment tasks/activities with the following rubrics.)

Assessment Task	Criterion	Excellent	Good	Marginal	Failure
		(A+, A, A-)	(B+, B)	(B-, C+, C)	(F)
1. Assignment	Ability to analyse and criticise	Outstanding	Substantial performance	Satisfactory	Unsatisfactory
/Attendance	the multi-omics research	performance on all	on all CILOS. Evidence	performance on the	performance on a
		CILOs. Strong evidence	of grasp of subject,	majority of CILOS	number of CILOS.
2. Examination	Ability to analyse, state and	of original thinking;	some evidence of	possibly with a few	Failure to meet
	apply the principles and	good organization,	critical capacity and	weaknesses. Being able	specified assessment
	subject matter learnt in the	capacity to analyse and	analytic ability;	to profit from the course	requirements, little
	course	synthesize; superior	reasonable	experience;	evidence of familiarity
		grasp of subject matter;	understanding of issues;	understanding of the	with the subject matter;
		evidence of extensive	evidence of familiarity	subject; ability to	weakness in critical and
		knowledge base.	with literature.	develop solutions to	analytic skills; limited
				simple problems in the	or irrelevant use of
				material.	literature.

Applicable to students admitted in Semester A 2022/23 and thereafter

Applicable to students admitted before Semester A 2022/23

Assessment Task	Criterion	Excellent	Good	Fair	Marginal	Failure
		(A+, A, A-)	(B+, B, B-)	(C+, C, C-)	(D)	(F)
1. Assignment	Ability to analyse and	Outstanding	Substantial	Satisfactory	Barely satisfactory	Unsatisfactory
/Attendance	criticise the	performance on all	performance on all	performance on the	performance on a	performance on a
	multi-omics research	CILOs. Strong	CILOS. Evidence	majority of CILOS	number of CILOS.	number of CILOS.
2. Examination	Ability to analyse,	evidence of	of grasp of	possibly with a few	Sufficient familiarity	Failure to meet
	state and apply the	original thinking;	subject, some	weaknesses. Being	with the subject matter	specified assessment
	principles and subject	good organization,	evidence of	able to profit from	to enable the student	requirements, little
	matter learnt in the	capacity to analyse	critical capacity	the course	to progress without	evidence of familiarity
	course	and synthesize;	and analytic	experience;	repeating the course.	with the subject
		superior grasp of	ability; reasonable	understanding of		matter; weakness in
		subject matter;	understanding of	the subject; ability		critical and analytic
		evidence of	issues; evidence of	to develop solutions		skills; limited or
		extensive	familiarity with	to simple problems		irrelevant use of
		knowledge base.	literature.	in the material.		literature.

Part III Other Information (more details can be provided separately in the teaching plan)

1. Keyword Syllabus

(An indication of the key topics of the course.) Principles of sequencing, Genomics, Proteomics, Phylogenetic, Epigenetics, Evolution, Gene editing, Precision medicine, Ethics

2. Reading List

2.1 Compulsory Readings

(Compulsory readings can include books, book chapters, or journal/magazine articles. There are also collections of e-books, e-journals available from the CityU Library.)

1.	
2.	
3.	

2.2 Additional Readings

(Additional references for students to learn to expand their knowledge about the subject.)

1.	Introduction to genomics, third edition, by Arthur M. LESK
2.	
3.	