City University of Hong Kong Course Syllabus # offered by Department of Biomedical Engineering with effect from Semester A 2024/25 | Part I Course Over | rview | |---|--| | Course Title: | Biomedical Imaging and Biophotonics | | Course Code: | BME6118 | | Course Duration: | 1 semester | | Credit Units: | 3 credits | | Level: | P6 | | Medium of Instruction: | English | | Medium of
Assessment: | English | | Prerequisites: (Course Code and Title) | Nil | | Precursors:
(Course Code and
Title) | Nil | | Equivalent Courses:
(Course Code and
Title) | MBE6118 Biomedical Photonics BME8131 Biomedical Imaging and Biophotonics | | Exclusive Courses: (Course Code and Title) | Nil | #### Part II Course Details #### 1. Abstract This aim of this course is to develop students' knowledge and understanding about the fundamental principles of medical imaging technologies and biophotonics, and their applications to real-world devices. The topical coverage includes magnetic resonance imaging, x-ray computed tomography, ultrasonography, optical scattering theory and modelling, optical sensing and spectroscopy, optical microscopy, and photoacoustic tomography. Following the completion of this course, students will have a good understanding of various methods and instruments used in biomedical optical research and clinical applications. #### 2. Course Intended Learning Outcomes (CILOs) (CILOs state what the student is expected to be able to do at the end of the course according to a given standard of performance.) | No. | CILOs | Weighting
(if
applicable) | curricu
learnin
(please
approp | Discovery-enriched
curriculum related
learning outcomes
(please tick where
appropriate) | | | |-----|--|---------------------------------|---|---|----------|--| | | | | A1 | A2 | A3 | | | 1. | Describe the concepts and principles of major medical imaging technologies. | | | ✓ | | | | 2. | Employ concepts of photon-tissue interaction in biological tissues. | | | ✓ | | | | 3. | Explain principles of optical sensing, spectroscopy, and imaging techniques. | | √ | √ | | | | 4. | Interpret the principles of major imaging and their techniques, select proper imaging techniques for different biomedical imaging applications. | | | √ | | | | 5 | Discuss medical and biological photoacoustic imaging for biomedical applications technologies to clinical or preclinical problems. | | √ | √ | √ | | | | | N.A. | | | | | #### A1: Attitude Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers. ## A2: Ability Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to real-life problems. #### A3: Accomplishments Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes. # 3. Learning and Teaching Activities (LTAs) (LTAs designed to facilitate students' achievement of the CILOs.) | LTA | Brief Description | | CILO No. | | | | Hours/week (if applicable) | |--------------------------|---|----------|----------|----------|----------|----------|----------------------------| | | | 1 | 2 | 3 | 4 | 5 | | | Lectures/Tutorial | Explain key concepts and mathematical models related to medical and optical imaging and sensing technologies. | √ | √ | √ | √ | | 3 hrs/week | | Homework/
Examination | Require students to solve the problems based on the theories and models discussed during lectures. | √ | √ | √ | √ | √ | N.A. | | Project | Require students to propose an improvement or a new design of an optical imaging technology through literature survey | √ | | √ | √ | √ | N.A. | # 4. Assessment Tasks/Activities (ATs) (ATs are designed to assess how well the students achieve the CILOs.) | Assessment | CILO No. | | | | | Weighting | Remarks | | | |------------------------|------------|----------|------------|------------|------------|-----------|-------------------|--|--| | Tasks/Activities | 1 | 2 | 3 | 4 | 5 | | | | | | Continuous Assessment: | 40% | 6 | | | | | | | | | Project | √ * | | √ * | √ * | √ * | 20% | | | | | Assignments | √ | √ | √ | √ | √ | 20% | | | | | Examination: 60% | | | | 1 | • | • | | | | | Examination | ✓ | | ✓ | ✓ | ✓ | 60% | Duration: 2 hours | | | | | 1 | 1 | 1 | | | 100% | | | | ^{*}Depending on the topic chosen by the student For a student to pass the course, at least 30% of the maximum mark for both coursework and examination should be obtained. # 5. Assessment Rubrics (Grading of student achievements is based on student performance in assessment tasks/activities with the following rubrics.) # Applicable to students admitted before Semester A 2022/23 and in Semester A 2024/25 & thereafter | Assessment
Task | Criterion | Excellent (A+, A, A-) | Good
(B+, B, B-) | Fair (C+, C, C-) | Marginal (D) | Failure
(F) | |--------------------|--|-----------------------|---------------------|------------------|--------------|---| | 1. Examination | 1.1 Ability to analyze problems in medical imaging and biophotonics,1.2 Ability to apply principles to solve biomedical problems. | High | Significant | Moderate | Basic | Not even
reaching
marginal levels | | 2. Project | Ability to acquire knowledge related to a medical imaging or biophotonic technique, identify a problem, and propose a methodology to solve the problem. | High | Significant | Moderate | Basic | Not even
reaching
marginal levels | | 3. Assignment | Ability to solve problems relevant to medical imaging, optical sensing, spectroscopy, and imaging. | High | Significant | Moderate | Basic | Not even reaching marginal levels | # Applicable to students admitted from Semester A 2022/23 to Summer Term 2024 | Assessment
Task | Criterion | Excellent (A+, A, A-) | Good
(B+, B) | Marginal (B-, C+, C,) | Failure
(F) | |--------------------|--|-----------------------|-----------------|-----------------------|-----------------------------------| | 1. Examination | 1.1 Ability to analyze problems in medical imaging and biophotonics,1.2 Ability to apply principles to solve biomedical problems. | High | Significant | Basic | Not even reaching marginal levels | | 2. Project | Ability to acquire knowledge related to a medical imaging or biophotonic technique, identify a problem, and propose a methodology to solve the problem. | High | Significant | Basic | Not even reaching marginal levels | | 3. Assignment | Ability to solve problems relevant to medical imaging, optical sensing, spectroscopy, and imaging. | High | Significant | Basic | Not even reaching marginal levels | ### Part III Other Information (more details can be provided separately in the teaching plan) ### 1. Keyword Syllabus (An indication of the key topics of the course.) Magnetic resonant imaging, X-ray computed tomography, Ultrasonography, Tissue-photon interaction, Optical sensing and spectroscopy, Optical microscopy, Optical coherence tomography, and Photoacoustic imaging. ### 2. Reading List ### 2.1 Compulsory Readings (Compulsory readings can include books, book chapters, or journal/magazine articles. There are also collections of e-books, e-journals available from the CityU Library.) | 1. | Biomedical optics: principles and imaging. Wang, Lihong V., and Hsin-I. Wu. 2012. | |----|---| | 2. | Fundamentals of Medical Imaging. Suetens, Paul, 2009 | ## 2.2 Additional Readings (Additional references for students to learn to expand their knowledge about the subject.) | 1. | Fundamentals of Photonics, 2nd Edition. Bahaa E. A. Saleh, Malvin Carl Teich. 2007 | |----|--| | 2. | P. N. Prasad, "Introduction to biophotonics", John Wiley & Sons, Inc., New Jersey, 2003. | | 3. | Markolf H. Niemz, "Laser-Tissue Interactions", Springer, Berlin, 2007. |