City University of Hong Kong Course Syllabus

offered by Department of Systems Engineering with effect from Semester A 2023 / 24

Part I Course Overview

Course Title: Semiconductor Process Equipment and Materials					
Course Code:	ADSE6202				
Course Duration:	One Semester				
Credit Units:	3				
Level:	P6				
Medium of Instruction:	English				
Medium of Assessment:	English				
Prerequisites:					
(Course Code and Title)	Nil				
Precursors:					
(Course Code and Title)	Nil				
Equivalent Courses:					
(Course Code and Title)	Nil				
Exclusive Courses:					
(Course Code and Title)	Nil				

1

Part II Course Details

1. Abstract

Learn the use and science fundamentals behind the materials critical to microelectronic devices and device packaging, such as silicon, germanium, alumina, silver, copper and polymers. This course includes conventional and state-of-the-art fabrication techniques. Highlighted within the course will be the processing unit operations in semiconductor manufacturing (e.g., PVD, CVD, CMP, Electroplating, Etching, Photolithography, Ion Implantation), testing/assembly of these materials as semiconductor devices, and the protective packaging that permits these microdevices to be interconnected within larger electronic systems. At course completion, students will possess an understanding of each processing unit in semiconductor manufacturing, packaging and assembly, and materials integration of microelectronic devices.

2. Course Intended Learning Outcomes (CILOs)

(CILOs state what the student is expected to be able to do at the end of the course according to a given standard of performance.)

No.	CILOs	Weighting	Discov	ery-eni	riched
		(if	curricu	ılum rel	lated
		applicable)	learnin	g outco	omes
			(please	e tick	where
			approp	riate)	
			AI	A2	A3
1.	Fundamentals of the materials critical to	25%	✓	✓	
	microelectronic devices and device packaging				
2.	Processing unit operations in semiconductor	25%	✓	✓	
	manufacturing				
3.	Semiconductor fabrication equipment	25%	✓	✓	
4	Testing/assembly in semiconductor devices	25%	✓	✓	
		100%			

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to self-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

3. Teaching and Learning Activities (TLAs)

(TLAs designed to facilitate students' achievement of the CILOs.)

TLA	Brief Description	CIL	CILO No.			Hours/week (if
		1	2	3	4	applicable)
Lecture	Lectures on the topics of the keyword syllabus.	✓	✓	✓	✓	3 hours/week
Lab	Lab session	✓	✓	✓	✓	3 hours/semester
Mini project	Team-based mini project	✓	✓	✓	✓	3 hours/semester
Office Hour	Discussions of course materials	✓	✓	✓	✓	1 hour/week

4. Assessment Tasks/Activities (ATs)

(ATs are designed to assess how well the students achieve the CILOs.)

Assessment Tasks/Activities	CILO No.		Weighting	Remarks		
	1	2	3	4		
Continuous Assessment: 50 %						
Mid-term exam	✓	✓	✓	✓	15%	
Lab report	✓	✓	✓	✓	15%	
Mini project report	✓	✓	✓	✓	20%	
Examination: 50 % (duration: 2 hours , if applicable)						
Examination	✓	✓	✓	✓	50%	
					100%	

For a student to pass the course, at least 30% of the maximum mark for the examination should be obtained.

5. Assessment Rubrics

(Grading of student achievements is based on student performance in assessment tasks/activities with the following rubrics.)

Applicable to students admitted in Semester A 2022/23 and thereafter

Assessment Task	Criterion	Excellent (A+, A, A-)	Good (B+, B)	Marginal (B-, C+, C)	Failure (F)
1. Mid-term exam	Understand some of the techniques, skills, and modern trends for semiconductor process equipment and materials.	High	Significant	Moderate/Basic	Not even reaching marginal levels
2. Lab report	Gain hands-on experience with the semiconductor microfabrication processes equipment through laboratory experiments	High	Significant	Moderate/Basic	Not even reaching marginal levels
3. Mini project	Apply the knowledge acquired to address practical issues through teamwork and oral presentation.	High	Significant	Moderate/Basic	Not even reaching marginal levels
4. Final exam	Apply the knowledge of mathematics, science and engineering to semiconductor process equipment and materials.	High	Significant	Moderate/Basic	Not even reaching marginal levels

Applicable to students admitted before Semester A 2022/23

Assessment Task	Criterion	Excellent (A+, A, A-)	Good (B+, B, B-)	Fair (C+, C, C-)	Marginal (D)	Failure (F)
1. Mid-term exam	Understand some of the techniques, skills, and modern trends for semiconductor process equipment and materials.	High	Significant	Moderate	Basic	Not even reaching marginal levels
2. Lab report	Gain hands-on experience with the semiconductor microfabrication processes equipment through laboratory experiments	High	Significant	Moderate	Basic	Not even reaching marginal levels
3. Mini project	Apply the knowledge acquired to address practical issues through teamwork and oral presentation.	High	Significant	Moderate	Basic	Not even reaching marginal levels
4. Final exam	Apply the knowledge of mathematics, science and engineering to semiconductor process equipment and materials.	High	Significant	Moderate	Basic	Not even reaching marginal levels

Part III Other Information (more details can be provided separately in the teaching plan)

1. Keyword Syllabus

(An indication of the key topics of the course.)

- Overview of wafer fabrication and packaging
- Key materials and chemicals in microelectronic devices and packaging
- Semiconductor unit process and equipment
- Materials and equipment in testing/assembly
- Productivity and process yields
- Process and equipment diagnosis

2. Reading List

2.1 Compulsory Readings

(Compulsory readings can include books, book chapters, or journal/magazine articles. There are also collections of e-books, e-journals available from the CityU Library.)

1	•	Fundamentals of Semiconductor Manufacturing and Process Control, Wiley-Interscience, 2006			
2	2.	Semiconductor Manufacturing Handbook, McGraw-Hill, 2005			
3		Microchip Fabrication: A Practical Guide to Semiconductor Processing, McGraw-Hill, 2014			

2.2 Additional Readings

(Additional references for students to learn to expand their knowledge about the subject.)

NIL