City University of Hong Kong Course Syllabus

offered by School of Energy and Environment with effect from Semester A 2022 / 23

Part I Course Overv	iew
Course Title:	Energy Generation and Storage Systems
Course Code:	SEE8111
Course Duration:	One semester
Credit Units:	3
Level:	R8
Medium of Instruction:	English
Medium of Assessment:	English
Prerequisites:	Nil
Precursors:	Nil
Equivalent Courses:	SEE6101 Energy Generation and Storage Systems
Exclusive Courses:	Nil

1

Part II Course Details

1. Abstract

This course is mainly related to energy supply and storage system that are commonly used in our society. Operation principles of basic energy generation and storage systems, their advantages, and major drawbacks will be taught in the course. Non-conventional energy and renewable energy will be introduced as means of sustainable development.

2. Course Intended Learning Outcomes (CILOs)

No.	CILOs	Weighting*		ery-eni	
		(if		ılum rel	
		applicable)	learnin	ig outco	omes
			(please	e tick	where
			appropriate)		
			A1	A2	<i>A3</i>
1.	Analyze the supply and demand of fuel in the world.	10			
2.	Describe the pros and cons of conventional energy sources	20	V	V	
3.	Describe and compare the operation principle and environmental impacts of a coal-fired power plant with a nuclear power plant	20		V	
4.	Identify the different sources of renewable energy and innovative technologies in harnessing energy from these renewable sources	40	V	V	
5.	Describe and compare different energy storage technologies	10		1	
		100%		•	

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to self-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

3. Teaching and Learning Activities (TLAs)

TLA	Brief Description		CILO No.				Hours/week (if
		1	2	3	4	5	applicable)
Lecture	Explain key concepts, such as theories related to energy generation and storage	V	V	V	V	√	2.5 hrs/wk
Tutorial, class demo	Solidify students' concepts with practice	V	V	V	V	V	0.5 hr/wk

4. Assessment Tasks/Activities (ATs)

Assessment Tasks/Activities	CILO No.					Weighting*	Remarks
	1	2	3	4	5		
Continuous Assessment: _60%							
In-class test						20%	
Assignment						40%	
Examination: _40% (duration:			urs	,	if app	olicable)	
						1.000/	

100%

5. Assessment Rubrics

Applicable to students admitted in Semester A 2022/23 and thereafter

Assessment Task	Criterion	Excellent (A+, A, A-)	Good (B+, B)	Marginal (B-, C+, C)	Failure (F)
1. In-class test	Ability to analyse and solve practical problems related to energy supply and power plant	High	Significant	Moderate	Not even reaching marginal levels
2. Assignment	Ability to analyse and solve questions related to energy generation and storage	High	Significant	Moderate	Not even reaching marginal levels
3. Final exam	Ability to analyse and solve practical problems related to energy generation and storage		Significant	Moderate	Not even reaching marginal levels

Applicable to students admitted before Semester A 2022/23

Assessment Task	Criterion	Excellent	Good	Fair	Marginal	Failure
		(A+, A, A-)	(B+, B, B-)	(C+, C, C-)	(D)	(F)
1. In-class test	Ability to analyse and solve practical problems related to energy supply and power plant		Significant	Moderate	Basic	Not even reaching marginal levels
2. Assignment	Ability to analyse and solve questions related to energy generation and storage	C	Significant	Moderate	Basic	Not even reaching marginal levels
3. Final exam	Ability to analyse and solve practical problems related to energy generation and storage	C	Significant	Moderate	Basic	Not even reaching marginal levels

Part III Other Information (more details can be provided separately in the teaching plan)

1. Keyword Syllabus

Fuel availability; fossil fuels; conventional and non-conventional energy systems; biomass; combustion; steam cycle; pulverized coal fired power plant, nuclear power plant; generator; emission control; principles of renewable energy such as solar, wind, hydro, tidal and wave; energy storage systems.

2. Reading List

2.1 Compulsory Readings

1. Energy Science, Principles, Technologies, and Impacts, John Andrews and Nick Jelley, Oxford University Press, 2nd edition, 2013,

2.2 Additional Readings

1.	Alternative Energy Systems and Applications, B. K. Hodge, John Wiley and Sons, 2010.
2.	Energy and Climate: How to achieve a successful energy transition, Alexandre Rojey, Wiley,
	2009.
3.	Renewable Energy. Boyle G. Oxford University Press, 2012.
4.	Energy for a Sustainable World, Nicola Armaroli, Vincenzo Balzani, Wiley-VCH, 2011.
5.	The World Scientific Handbook of Energy, Gerard M. Crawley, World Scientific, 2013.
6.	Principles of Sustainable Energy, Frank Kreith, Jan F. Kreider, CRC Press, 2011.
7.	Nuclear Energy: what everyone needs to know, Charles D. Ferguson. Oxford University Press,
	2011.
8.	Introduction to Wind Energy Systems. Basics, technology and operation. Hermann-Josef
	Wagner, Jyotirmay Mathur, Springer 2013.
9.	Geothermal Energy: renewable energy and the environment, William E. Glassley, CRC Press,
	2010.
10.	Solar Energy Fundamentals. Robert K. McMordie, Fairmont Press, 2012.
11.	Electrochemical Technologies for Energy Storage and Conversion, Ru-Shi Liu et al.
	Wiley-VCH, 2012.
12.	US Department of Energy - http://www.energy.gov/
	Renewable Energy Association - http://www.r-e-a.net/
	National Hydrogen Association - http://www.hydrogenassociation.org/
	EMSD website: http://www.emsd.gov.hk/