City University of Hong Kong Course Syllabus

offered by School of Data Science with effect from Semester B 2022/23

Part I Course Overview

Course Title:	Statistical Machine Learning II
Course Code:	SDSC6001
Course Duration:	One Semester
Credit Units [.]	3
Level:	P6
Medium of Instruction:	English
Medium of Assessment:	English
Prerequisites : (Course Code and Title)	SDSC5001 Statistical Machine Learning I
Precursors : (Course Code and Title)	Nil
Equivalent Courses:	Nil
Exclusive Courses: (Course Code and Title)	Nil

Part II Course Details

1. Abstract

This course focuses on the theoretical foundation and fundamental methods in unsupervised and supervised learning, and Deep learning methods as well as the discipline of applying Python to program and implement aforementioned algorithms and methods.

2. Course Intended Learning Outcomes (CILOs)

(CILOs state what the student is expected to be able to do at the end of the course according to a given standard of performance.)

No.	CILOs	Weighting (if applicable)	Discov curricu learnin (please approp	ery-enr llum rel g outco tick riate)	riched ated omes where
1	State rigorously fundamental principles ideas theories	20%	AI	A2	A3
1.	and methods of machine learning and deep learning	2070			
2.	Distinguish and compare various machine learning and deep learning models	20%	~		
3.	Apply common machine learning and deep learning methods and algorithms to datasets	40%	\checkmark	\checkmark	\checkmark
4.	Solve some practical problems by existing machine learning and deep learning methods and designing new algorithms	20%	~	~	~
		100%			

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to self-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

3. Teaching and Learning Activities (TLAs)

TLA	Brief Description	CILO No.			Hours/week		
	_	1	2	3	4		(if
							applicable)
Lecture	Learning through	\checkmark	\checkmark	\checkmark	\checkmark		39 hours in
	teaching is primarily						total
	based on lectures and						
	demonstrations.						
Mini-project	A typical machine	\checkmark	\checkmark	\checkmark	\checkmark		After class
	learning problem will						
	be given to students to						
	solve. The students are						
	expected to tackle the						
	given problem, write a						
	report and give a						
	presentation. This						
	learning activity will be						
	mainly student-led but						
	with instructor's						
	structural guidance.						

(TLAs designed to facilitate students' achievement of the CILOs.)

Lectures cover not only the narrowly focused techniques in engineering economy but also the wider issues of the environment that affect engineering economic decision making. Students are expected to participate in class discussion when needed.

4. Assessment Tasks/Activities (ATs)

(ATs are designed to assess how well the students achieve the CILOs.)

Assessment Tasks/Activities	CILO No.				Weighting	Remarks
	1	2	3	4		
Continuous Assessment: <u>100</u> %						
Test	\checkmark	\checkmark	\checkmark	\checkmark	50%	
Questions are designed to see						
how well the students have						
learned the fundamental theory						
of machine learning and deep						
learning, and applications of						
them to some datasets.						
Mini-Project	\checkmark	\checkmark	\checkmark	\checkmark	25%	
The project provides students						
chances to demonstrate how						
well they have achieved their						
intended learning outcomes.						
Mini-Project Presentation	\checkmark	\checkmark	\checkmark	\checkmark	25%	
The project provides students						
chances to demonstrate how						
well they have achieved their						
intended learning outcomes.						
	100%					

5. Assessment Rubrics

(Grading of student achievements is based on student performance in assessment tasks/activities with the following rubrics.)

Assessment Task	Criterion	Excellent	Good	Marginal	Failure
		(A+, A, A-)	(B+, B)	(B-, C+, C)	(F)
1. Test	Ability to understand and apply the fundamental theory of machine learning and deep learning	High	Significant	Basic	Not even reaching marginal level
2.Mini-Project Report	Ability to demonstrate the understanding of the basic concepts, fundamental theory, deep learning methods, and their applications to some datasets.	High	Significant	Basic	Not even reaching marginal level
3.Mini-Project Presentation	Ability to demonstrate how well the intended learning outcomes are achieved.	High	Significant	Basic	Not even reaching marginal level

Applicable to students admitted in Semester A 2022/23 and thereafter

Applicable to students admitted before Semester A 2022/23

Assessment Task	Criterion	Excellent	Good	Fair	Marginal	Failure
		(A+, A, A-)	(B+, B, B-)	(C+, C, C-)	(D)	(F)
1. Test	Ability to understand and apply the	High	Significant	Moderate	Basic	Not even reaching
	fundamental theory of machine					marginal level
	learning and deep learning					
2. Mini-Project	Ability to demonstrate the	High	Significant	Moderate	Basic	Not even reaching
Report	understanding of the basic concepts,					marginal level
	fundamental theory, deep learning					
	methods, and their applications to					
	some datasets.					
3.Mini-Project	Ability to demonstrate how well the	High	Significant	Moderate	Basic	Not even reaching
Presentation	intended learning outcomes are					marginal level
	achieved.					

Part III Other Information (more details can be provided separately in the teaching plan)

1. Keyword Syllabus

(An indication of the key topics of the course.)

Classic Theory of Machine Learning:

Supervised Learning: Support Vector Machine; regularizations; Tree; Matrix Factorization

Unsupervised Learning: Clustering; Principal Component Analysis; Factor Analysis

Deep Neural Networks:

Feed-forward Neural Networks;

Convolutional Neural Networks;

Recurrent Neural Networks;

Autoencoders;

Generative Adversarial Networks;

Self-attention;

Transformer;

Deep Reinforcement Learning;

Graph Neural Networks

Other technologies of Machine Learning and Deep Learning:

Explainable AI;

Model Selection;

Transfer Learning;

Model Selection;

2. Reading List

2.1 Compulsory Readings

(Compulsory readings can include books, book chapters, or journal/magazine articles. There are also collections of e-books, e-journals available from the CityU Library.)

The Elements of Statistical Learning by Hastie, Tibshirani, and Friedman, Springer
Lecture Notes

2.2 Additional Readings

(Additional references for students to learn to expand their knowledge about the subject.)

NIL