City University of Hong Kong Course Syllabus

offered by Department of Physics with effect from Semester A 2022/23

Part I Course Overview	,
Course Title:	Advanced Nuclear Medicine Physics
Course Code:	PHY8523
Course Duration:	One semester
Credit Units:	3
Level:	R8
Medium of Instruction:	English
Medium of Assessment:	English
Prerequisites: (Course Code and Title)	NA
Precursors: (Course Code and Title)	NA
Equivalent Courses: (Course Code and Title)	NA
Exclusive Courses: (Course Code and Title)	PHY6523 Advanced Nuclear Medicine Physics

Part II Course Details

1. Abstract

This course will advance understanding of nuclear medicine for imaging and radiotherapy. Topics covered will include: radionuclide production, transfer, storage, and handling; detection methods; and applications.

2. Course Intended Learning Outcomes (CILOs)

No.	CILOs	Weighting* (if applicable)	Discov curricu learnin (please approp	llum rel g outco tick	lated omes
1.	Radiation physics related to nuclear medicine. Emphasis will be on radioactive decay sources and interactions interaction of high energy photons and particles with heavy	50	A1	A2 •	A3
2.	metals and body tissues. Nuclear medicine imaging: principles and applications.	30		v	
3.	Nuclear medicine therapy: principles and applications.	20		~	
		100%			

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to self-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

3. Teaching and Learning Activities (TLAs)

TLA	Brief Description	CIL	CILO No.			Hours/week (if	
	_	1	2	3	4		applicable)
Lecture	Presentation of course material	13	8	5			2
Tutorial	Review of course material	7	4	2			1

4. Assessment Tasks/Activities (ATs)

Assessment Tasks/Activities	CILO No.					Weighting*	Remarks
	1	2	3	4			
Continuous Assessment: 30%							
Monthly assignments	15	9	6			30	
Final examination	35	21	14			70	
Examination: 70% (duration: 2 ho	ours)						
·						400	

100%

5. Assessment Rubrics

Applicable to students admitted in Semester A 2022/23 and thereafter

Assessment Task	Criterion	Excellent	Good	Marginal	Failure
		(A+, A, A-)	(B+, B)	(B-, C+, C)	(F)
1. Exam	Understanding of fundamental	High	Significant	Moderate	Not even marginal level
	concepts and applications of				
	radiation physics related to				
	nuclear medicine, imaging and				
	radiotherapy.				
2. Assignments	Explain key concepts of	High	Significant	Moderate	Not even marginal level
	nuclear medicine for				
	imaging and radiotherapy				

Applicable to students admitted before Semester A 2022/23

Assessment Task	Criterion	Excellent	Good	Fair	Marginal	Failure
		(A+, A, A-)	(B+, B, B-)	(C+, C, C-)	(D)	(F)
1. Exam	Understanding of fundamental	High	Significant	Moderate	Basic	Not even marginal
	concepts and applications of					level
	radiation physics related to					
	nuclear medicine, imaging and					
	radiotherapy.					
2. Assignments	Explain key concepts of	High	Significant	Moderate	Basic	Not even marginal
	nuclear medicine for					level
	imaging and radiotherapy					

Part III Other Information

1. Keyword Syllabus

Radiation physics:

- Radionuclide production, transfer, storage, handling, and disposal
- Gamma ray scattering and absorption
- High-energy particle scattering and absorption
- Dosimetry (calculations and measurements)

Imaging applications:

- Uptake measurement
- Scintigraphy
- Single-photon emission computed tomography (SPECT)
- Positron emission tomography (PET)

Therapeutic applications:

- Treating thyroid and blood disorders
- Other disorders

2. Reading List

2.1 Compulsory Readings

1.	
2.	
3.	

2.2 Additional Readings

1.	Radiation Physics for Medical Physicists
2.	
3.	