City University of Hong Kong Course Syllabus

offered by College/School/Department of Physics with effect from Semester A 2022/23

Part I Course Overview

Course Title:	Advanced Instrumentation and Measurement Methods for Experimental Physics
Course Code:	PHY8401
Course Duration:	One Semester
Credit Units:	3
Level:	R8
Medium of Instruction:	English
Medium of Assessment:	English
Prerequisites : (Course Code and Title)	Nil
Precursors : <i>(Course Code and Title)</i>	Nil
Equivalent Courses : (Course Code and Title)	Nil
Exclusive Courses : (Course Code and Title)	PHY6501 Advanced Instrumentation and Measurement Methods for Experimental Physics

Part II Course Details

1. Abstract

The goal of the Advanced Instrumentation and Measurement course is to expand the student knowledge of experimental physics research beyond the basic knowledge with a focus on modern instrumentation and experiments, particularly in with respect to scattering techniques as well as use of large-scale facilities. In particular, this course focuses on neutron and X-ray sources such as synchrotrons and covers both diffraction and inelastic scattering.

2. Course Intended Learning Outcomes (CILOs)

No.	CILOs	Weighting*	Discov	ery-enr	iched
		(11	curricu	lum rel	ated
		applicable)	learnin	g outco	mes
			(please	tick	where
			approp	riate)	
			A1	A2	A3
1.	Acquire in-depth knowledge about different scattering	25		~	
	techniques with emphasis on neutron and X-ray techniques.			•	
2.	Be able to operate analytical instruments and employ	25	~	~	
	measurement methods. Understand the limitations and		•	•	
	compromises of the instruments and methods.				
3.	Describe the principles, operations, and structure of large-	25	~		
	scale, shared facilities.		-		
4.	Observe specific case-studies for better understanding	25	~		<
	the practical applications.		•		•
		100%			

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to self-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

3. Teaching and Learning Activities (TLAs)

TLA	Brief Description		O No.		Hours/week (if		
		1	2	3	4		applicable)
Lecture	Explain key concepts and theory of topics of the course	~	~	~			2
Tutorial	Explain how some problems are solved and the techniques used.	~	~	•	~		1
Project	Hands-on experience with analysis of real-world data.	~	~	•	~		1

4. Assessment Tasks/Activities (ATs)

Assessment Tasks/Activities	CILO No.					Weighting*	Remarks
	1	2	3	4			
Continuous Assessment: _75_%							
Assignments	~	~	~	~		50%	Bi-weekly assignments
Term Paper	~	~	~	~		25%	
Examination: (duration: 2hrs)	~	~	~	~		25%	
						100%	

5. Assessment Rubrics

A accompant Tools	Critarian	Excellent	Cood	Manain al	Eailuma
Assessment Task	Cinterion	Excellent	Good	Iviarginar	Failule
		(A+, A, A-)	(B+, B)	(B-, C+, C)	(F)
1. Assignments	1. Demonstrate	Student completes all	Student completes at least	Student completes at least	Student completes less
	Correct understanding of	assignments, and	80% of assignments, and	65% of assignments, and	than 50% of assignments.
	key concepts.	demonstrates excellent	demonstrates	shows some of the	Or, fails to accurately
	2.Expand on learned concepts via	understanding of the	understanding of the	scientific principles	describe the scientific
	self-learning.	scientific principles	scientific principles	governing the behaviour.	principles governing the
		governing the behaviour.	governing the behaviour.	Student is able to	behaviour.
		Student is able to	Student is generally able	communicate ideas via text	
		communicate ideas	to communicate ideas via	and visual aids accurately	
		effectively and clearly via	text and visual aids.	but in a simple manner.	
		text and visual aids.		-	
2. Term paper	1. Demonstrate	Demonstrates excellent	Demonstrates	Shows some of the	Fails to accurately describe
	Correct understanding of	understanding of the	understanding of the	scientific principles	the scientific principles.
	key concepts.	scientific principles	scientific principles	governing the behaviour.	Student's work shows
	2. Expand on learned concepts via	governing the behaviour.	governing the behaviour.	Student is able to	evidence of plagiarism.
	self-learning.	Student is able to	Student is generally able to	communicate ideas via text	Student fails to complete
		communicate ideas	communicate ideas via text	and visual aids.	the assignment.
		effectively via text and	and visual aids.		
		visual aids.			
3. Examination	1. Capacity for using physics	Student can thoroughly	Student can identify and	Student provides simple	Student fails to
	knowledge and theory to solve	identify and describe how	describe how the principles	but accurate evaluations of	demonstrate how the
	Problems.	the principles are applied	are applied towards	how the principles are	principles are applied
	2. Demonstrate	towards successful	successful completion of	applied towards successful	towards successful
	Correct understanding of	completion of	experiments.	completion of	completion of
	key concepts.	experiments.		experiments.	experiments.

Applicable to students admitted in Semester A 2022/23 and thereafter

Applicable to students admitted before Semester A 2022/23

Assessment Task	Criterion	Excellent	Good	Fair	Marginal	Failure
		(A+, A, A-)	(B+, B, B-)	(C+, C, C-)	(D)	(F)
1. Assignments	1. Demonstrate	Student completes	Student completes at	Student completes at	Student completes at	Student completes
-	Correct understanding of	all assignments, and	least 80% of	least 70% of	least 60% of	less than 50% of
	key concepts.	demonstrates	assignments, and	assignments, and	assignments, but can	assignments. Or,
	2.Expand on learned concepts via	excellent	demonstrates	shows some of the	only demonstrate	fails to accurately

	self-learning.	understanding of the scientific principles governing the behaviour. Student is able to communicate ideas effectively and clearly via text and	understanding of the scientific principles governing the behaviour. Student is generally able to communicate ideas via text and visual aids.	scientific principles governing the behaviour. Student is able to communicate ideas via text and visual aids accurately but in a simple manner.	brief understanding of the scientific principles governing the behaviour. Student is able to poorly, but accurately to communicate ideas	describe the scientific principles governing the behaviour.
2. Term paper	1. Demonstrate	visual aids.	Demonstrates	Shows some of the	via text and visual aids. Can only	Fails to accurately
	Correct understanding of key concepts. 2.Expand on learned concepts via self-learning.	excellent understanding of the scientific principles governing the behaviour. Student is able to communicate ideas effectively via text and visual aids.	understanding of the scientific principles governing the behaviour. Student is generally able to communicate ideas via text and visual aids.	scientific principles governing the behaviour. Student is able to communicate ideas via text and visual aids.	demonstrate brief understanding of the scientific principles governing the behaviour. Student is able to poorly, but accurately to communicate ideas via text and visual aids.	describe the scientific principles. Student's work shows evidence of plagiarism. Student fails to complete the asignment.
3. Examination	 Capacity for using physics knowledge and theory to solve Problems. Demonstrate Correct understanding of key concepts. 	Student can thoroughly identify and describe how the principles are applied towards successful completion of experiments.	Student can identify and describe how the principles are applied towards successful completion of experiments.	Student provides simple but accurate evaluations of how the principles are applied towards successful completion of experiments.	Student can provide only brief descriptions how the principles are applied to towards successful completion of experiments.	Student fails to demonstrate how the principles are applied towards successful completion of experiments.

Part III Other Information

1. Keyword Syllabus

• Fundamental scattering techniques: neutron diffraction, X-ray diffraction, scattering mechanisms, scattering theory.

- Advanced techniques: Inelastic neutron and X-Ray scattering.
- Spectroscopy of solids

• Instrumentation and operation of large scale facilities: Synchrotron radiation production and properties, neutron sources.

• Specific case studies in measurement and analysis of scattering data.

2. Reading List

2.1 Compulsory Readings

1.	Willis and Carlile, Experimental Neutron Scattering, Oxford University Press, 2013
2.	Warren, X-ray Diffraction, Dover, 1990
3.	Squires, Introduction to the Theory of Thermal Neutron Scattering, Cambridge U. Press, 2012

2.2 Additional Readings

1.	Cullity & Stock, Elements of X-Ray Diffraction, 3rd ed.; Prentice Hall, 2001.
2.	Schuelke, Electron Dynamics by Inelastic X-Ray Scattering, Oxford, 2007.
3.	de Groot & Kotani, Core Level Spectroscopy of Solids, CRC Press, 2008.
4.	Duke, Synchrotron Radiation: Production and Properties, Oxford, 2008.
5.	Handbook of Accelerator Physics and Engineering, World Scientific, 2013