City University of Hong Kong Course Syllabus

offered by Department of Physics with effect from Semester B 2022/23

Part I Course Overview

Course Title:	Physics at Nanoscale
Course Code:	РНУ6504
Course Duration:	One Semester
Credit Units:	3
Level:	P6
Medium of Instruction:	English
Medium of Assessment:	English
Prerequisites : (Course Code and Title)	Nil
Precursors : (Course Code and Title)	PHY3251 Quantum Mechanics or equivalent
Equivalent Courses : (Course Code and Title)	Nil
Exclusive Courses : (Course Code and Title)	PHY8504 Physics at Nanoscale

Part II Course Details

1. Abstract

This course is the introductory course on nanoscience for the MSc and PhD Students in Applied Physics Programme and is designed to familiarize the students to the interdisciplinary aspects of nano-science by integrating important components of the broad research field. While focusing on physics, this integrated approach will cross the traditional disciplines of materials science, biology, chemistry, and electrical engineering. Fundamental properties of materials at the nanoscale, synthesis of nanoparticles/nanomaterials, characterization tools, and properties of nanoscale devices and systems will be covered.

2. Course Intended Learning Outcomes (CILOs)

(CILOs state what the student is expected to be able to do at the end of the course according to a given standard of performance.)

No.	CILOs	Weighting	Discov	very-en	riched
		(if	curricu	ulum re	lated
		applicable)	learnir	ng outco	omes
			(please	e tick	where
			approp	oriate)	
			A1	A2	A3
1.	Describe the unique interactions and effects occurring at the	25		\checkmark	
	nanoscale.				
2.	Describe how quantization in nanomaterials impacts	25		\checkmark	
	electrical, optical, and magnetic properties.				
3.	Describe how nanomaterials are synthesized and integrate	25	✓		
	nanomaterials in applications, particularly in the fields of:				
	electronics, energy devices, and medicine/medical devices.				
4.	Demonstrate the capacity for self-directed learning on topics	25			✓
	related to nanoscience and nanotechnology.				
		100%			

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to self-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

3. Teaching and Learning Activities (TLAs)

TLA	Brief Description	CIL	CILO No.		Hours/week		
		1	2	3	4		(if applicable)
Lecture	Explain key concepts and theory of topics of the course	~	✓	~			2
Tutorial	Explain how some problems are solved and the techniques used.	✓	✓	~	~		1
Assignments	Homework and Projects	✓	>	>	✓		

(TLAs designed to facilitate students' achievement of the CILOs.)

4. Assessment Tasks/Activities (ATs)

(ATs are designed to assess how well the students achieve the CILOs.)

Assessment Tasks/Activities	CILO No.			Weighting	Remarks	
	1	2	3	4		
Continuous Assessment: 100%						
Coursework	~	>	<		30%	Bi-weekly assignments
Oral Presentation	~	~	>	>	30%	Oral presentation on the group project studying a specific nanoscience phenomenon
Final Report	~	~	>	>	40%	Final Report on the group project
					100%	

5. Assessment Rubrics

(Grading of student achievements is based on student performance in assessment tasks/activities with the following rubrics.)

Assessment Task	Criterion	Excellent	Good	Marginal	Failure
		(A+, A, A-)	(B+, B)	(B-, C+, C)	(F)
1. Coursework	1. Capacity for using physics	Student completes	Student completes at	Student completes at	Student completes
	knowledge and theory to solve	all assignments, and	least 80% of	least 50% of	less than 50% of
	Problems.	demonstrates	assignments, and	assignments, but can	assignments. Or,
	2. Demonstrate correct	excellent	demonstrates	only demonstrate	fails to accurately
	understanding of key concepts.	understanding of the	understanding of the	brief understanding	describe the
		scientific principles	scientific principles	of the scientific	scientific principles
		governing the	governing the	principles governing	governing the
		behaviour at the	behaviour at the	the behaviour at the	behaviour at the
		nanoscale.	nanoscale.	nanoscale.	nanoscale.
2. Final Report	1. Demonstrate correct	Student can	Student can identify	Student can provide	Student fails to
	understanding of key concepts.	thoroughly identify	and describe how	only brief	demonstrate how the
	2. Expand on learned concepts	and describe how	the principles are	descriptions how the	principles are
	via self-learning.	the principles are	applied to science	principles are	applied to science
		applied to science	and technology.	applied to science	and technology.
		and technology.	Student's work	and technology.	Student's work
		Student's work	shows evidence of	Student's work	shows evidence of
		shows strong	original thinking, as	shows little evidence	plagiarism. Student
		evidence of original	well as ability to	of original thinking,	fails to complete the
		thinking, as well as	utilize information	and no use of	assignment.
		ability to utilize	sources other than	information sources	
		information sources	taught material.	other than taught	
		other than taught	Student is generally	material. Student is	
		material. Student is	able to communicate	able to poorly, but	
		able to communicate	ideas via text and	accurately to	
		ideas effectively via	oral presentation.	communicate ideas	
		text and oral		via text and oral	
		presentation.		presentation.	

Applicable to students admitted in Semester A 2022/23 and thereafter

Applicable to students admitted before Semester A 2022/23

Assessment Task	Criterion	Excellent	Good	Fair	Marginal	Failure
		(A+, A, A-)	(B+, B, B-)	(C+, C, C-)	(D)	(F)
1. Coursework	1. Capacity for using physics	Student completes	Student completes at	Student completes at	Student completes at	Student completes
	knowledge and theory to solve	all assignments, and	least 80% of	least 60% of	least 50% of	less than 50% of
	Problems.	demonstrates	assignments, and	assignments, and	assignments, but can	assignments. Or,
	2. Demonstrate correct	excellent	demonstrates	shows some of the	only demonstrate	fails to accurately
	understanding of key concepts.	understanding of the	understanding of the	scientific principles	brief understanding	describe the
		scientific principles	scientific principles	governing the	of the scientific	scientific principles
		governing the	governing the	behaviour at the	principles governing	governing the
		behaviour at the	behaviour at the	nanoscale.	the behaviour at the	behaviour at the
		nanoscale.	nanoscale.		nanoscale.	nanoscale.
2. Final Report	1. Demonstrate correct	Student can	Student can identify	Student provides	Student can provide	Student fails to
	understanding of key concepts.	thoroughly identify	and describe how	simple but accurate	only brief	demonstrate how the
	2. Expand on learned concepts	and describe how	the principles are	evaluations of how	descriptions how the	principles are
	via self-learning.	the principles are	applied to science	the principles are	principles are	applied to science
		applied to science	and technology.	applied to science	applied to science	and technology.
		and technology.	Student's work	and technology.	and technology.	Student's work
		Student's work	shows evidence of	Student's work	Student's work	shows evidence of
		shows strong	original thinking, as	shows some	shows little evidence	plagiarism. Student
		evidence of original	well as ability to	evidence of original	of original thinking,	fails to complete the
		thinking, as well as	utilize information	thinking, as minimal	and no use of	assignment.
		ability to utilize	sources other than	as ability to utilize	information sources	
		information sources	taught material.	information sources	other than taught	
		other than taught	Student is generally	other than taught	material. Student is	
		material. Student is	able to communicate	material. Student is	able to poorly, but	
		able to communicate	ideas via text and	able to communicate	accurately to	
		ideas effectively via	oral presentation.	ideas via text and	communicate ideas	
		text and oral		oral presentation.	via text and oral	
		presentation.			presentation.	

Part III Other Information (more details can be provided separately in the teaching plan)

1. Keyword Syllabus

(An indication of the key topics of the course.)

- Physical properties of nanomaterials: electrons in nanostructures, photons in nanostructures, electronic transport in mesoscopic devices.
- Introduction to the quantum Hall effects.
- Major classes of nanomaterials: quantum dots, nano-wires/nano-tubes, thin films and atomically-thin materials
- Synthesis of nanomaterials: thin film fabrication (thermal evaporation, e-beam evaporation, pulsed-laser deposition, molecular-beam epitaxy, sputtering), bottom-up fabrication (epitaxy, CVD, self-assembly), electron-beam lithography
- Characterization of nanomaterials: electron microscopy, atomic force microscopy, spectroscopy (Raman), crystallography
- Application areas: electronics, quantum computing, energy applications, nano-biology

2. Reading List

2.1 Compulsory Readings

(Compulsory readings can include books, book chapters, or journal/magazine articles. There are also collections of e-books, e-journals available from the CityU Library.)

1.	Edward L. Wolf, Nanophysics and Nanotechnology: An Introduction to Modern Concepts in
	Nanoscience, Wiley-VCH, 2nd ed. (2006).
2.	David K. Ferry, Transport in nanostructures, Cambridge University Press, 2nd ed. (2009).

2.2 Additional Readings

(Additional references for students to learn to expand their knowledge about the subject.)

1.	S. M. Lindsay, Introduction to Nanoscience.
2.	C. Binns, Introduction to Nanoscience and Nanotechnology.
3.	Supriyo Datta, Electronic Transport in Mesoscopic Systems.