City University of Hong Kong Course Syllabus

offered by Department of Physics with effect from Semester A 2022/23

Part I Course Overview	N .
Course Title:	Advanced Computational Methods
Course Code:	PHY6502
Course Duration:	One semester
Credit Units:	3
Level:	P6
Medium of Instruction:	English
Medium of Assessment:	English
Prerequisites: (Course Code and Title)	Nil
Precursors: (Course Code and Title)	Nil
Equivalent Courses : (Course Code and Title)	AP6172 Simulation and Modelling in Multidisciplinary Sciences
Exclusive Courses: (Course Code and Title)	AP8172 Simulation and Modelling in Multidisciplinary Sciences PHY8502 Advanced Computational Methods

Part II Course Details

1. Abstract

This course covers a range of topics and methods in multidisciplinary sciences that involve simulation and modelling. Its central aims are: (1) to describe basic theory and its numerical computation, (2) to introduce existing software that can be used to solve problems in multidisciplinary sciences, and (3) to guide students from the materials science, physics, chemistry, life science, and finance to do a discovery oriented multidisciplinary project such as new materials design, new physics exploration, DNA repair, drug design, or finance market prediction.

2. Course Intended Learning Outcomes (CILOs)

(CILOs state what the student is expected to be able to do at the end of the course according to a given standard of performance.)

No.	CILOs	Weighting	Discov	ery-eni	riched
		(if	curricu	lum re	lated
		applicable)	learnin	g outco	mes
			(please	tick	where
			approp	riate)	
			Al	A2	A3
1.	Recognize the importance of simulation and modeling in	10%	V		
	multidisciplinary sciences.				
2.	Demonstrate a few problems in multidisciplinary sciences	20%		V	
	using simulation and modelling tools.				
3.	Identify the key variables that determine the quality and	10%	V		
	reliability of simulation and modelling.				
4.	Apply basic simulation and modelling tools to solve simple	25%			V
	problems in one of the following areas: materials science,				
	physics, chemistry, life science, and finance.				
5	Apply the basic concepts, theories and tools to a discovery	25%			
	oriented project in student's own discipline such as: new				
	materials design, new physics exploration, DNA repair,				
	drug design, financial market prediction, etc.				
6	Identify state-of-the-art developments in the relevant area,	10%	V		
	to form opinions on specific issues and to demonstrate				
	independent problem-solving ability.				
		100%			

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to self-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

3. Teaching and Learning Activities (TLAs) (TLAs designed to facilitate students' achievement of the CILOs.)

TLA	Brief Description	CILO No.				Hours/week (if		
		1	2	3	4	5	6	applicable)
1	Lectures							14hrs/7wks
								(wk: 1-7)
2	Tutorials				\checkmark			6hrs/6wks
								(wk: 2-7)
3	Projects					$\sqrt{}$		21hrs/6wks
								(last 6 wks)

4. Assessment Tasks/Activities (ATs)

(ATs are designed to assess how well the students achieve the CILOs.)

Assessment Tasks/Activities	CILO No.						Weighting	Remarks
	1	2	3	4	5	6		
Continuous Assessment: 100%								
Assignments							20%	performance
								assessment purpose
Mid-term Test		$\sqrt{}$	$\sqrt{}$				30%	performance
								assessment purpose
								(week 7)
Project							50%	Inc. project report and
								presentation
Examination: 0%								

100%

5. Assessment Rubrics

(Grading of student achievements is based on student performance in assessment tasks/activities with the following rubrics.)

Applicable to students admitted in Semester A 2022/23 and thereafter

Assessment Task	Criterion	Excellent	Good	Marginal	Failure
		(A+, A, A-)	(B+, B)	(B-, C+, C)	(F)
1. Assignments	The student completes all	High	Significant	Basic	Not reaching marginal
	assessment tasks/activities and				level
	the work demonstrates				
	excellent understanding of the				
	scientific principles and the				
	working mechanisms.				
2. Mid-term Test	He/she can thoroughly identify	High	Significant	Basic	Not reaching marginal
	and explain how the principles				level
	are applied to science and				
	technology for solving				
	multidisciplinary sciences				
	problems.				
3. Project	The student's work shows	High	Significant	Basic	Not reaching marginal
	strong evidence of original				level
	thinking, supported by a				
	variety of properly				
	documented information				
	sources other than taught				
	materials. He/she is able to				
	communicate ideas effectively				
	and persuasively via written				
	texts and/or oral presentation.				

Applicable to students admitted before Semester A 2022/23

Assessment Task	Criterion	Excellent	Good	Fair	Marginal	Failure
		(A^{+}, A, A_{-})	(B+, B, B-)	(C+, C, C-)	(D)	(F)
1. Assignments	The student completes all assessment tasks/activities and the work demonstrates excellent understanding of the scientific principles and the working mechanisms.	High	Significant	Moderate	Basic	Not reaching marginal level
2. Mid-term Test	He/she can thoroughly identify and explain how the principles are applied to science and technology for solving multidisciplinary sciences problems.	High	Significant	Moderate	Basic	Not reaching marginal level
3. Project	The student's work shows strong evidence of original thinking, supported by a variety of properly documented information sources other than taught materials. He/she is able to communicate ideas effectively and persuasively via written texts and/or oral presentation.	High	Significant	Moderate	Basic	Not reaching marginal level

Part III Other Information (more details can be provided separately in the teaching plan)

1. Keyword Syllabus

(An indication of the key topics of the course.)

Introduction

Advances in computational methods and tools. Computer-aided design and simulation in multidisciplinary areas including materials science, physics, chemistry, life science, and finance.

• Monte Carlo methods

History. Applications areas. Use in mathematics. Monte Carlo and random numbers.

• Molecular dynamics simulation

Areas of Application. Design Constraints. Potentials. Molecular dynamics algorithms.

• Numerical optimization methods

Conjugate gradient method. Simulated annealing. Genetic algorithms.

• Numerical methods for solving partial differential equations (PDEs)

Finite difference method. Finite element method.

Project

A discovery oriented multidisciplinary project such as new materials design, new physics exploration, DNA repair, drug design, or financial market prediction.

2. Reading List

2.1 Compulsory Readings

(Compulsory readings can include books, book chapters, or journal/magazine articles. There are also collections of e-books, e-journals available from the CityU Library.)

1.	"Monte Carlo method", http://en.wikipedia.org/wiki/Monte_Carlo_method
2.	"Molecular dynamics", http://en.wikipedia.org/wiki/Molecular_dynamics
3.	"Mathematical optimization", http://en.wikipedia.org/wiki/Mathematical_optimization
4.	"Finite element method", https://en.wikipedia.org/wiki/Finite_element_method
5	"Finite difference Methods" https://en.wikipedia.org/wiki/Finite_difference_method

2.2 Additional Readings

(Additional references for students to learn to expand their knowledge about the subject.)

1.	K Binder, D W Heermann, "Monte Carlo Simulation in Statistical Physics: An Introduction",
	Berlin: Springer-Verlag, 1988. (C0092255)
2.	Daan Frenkel, Berend Smit, "Understanding Molecular Simulation: From Algorithms to
	Applications", San Diego: Academic Press, 1996. (QD461 .F86 1996)
3.	Alexander K Hartmann, Heiko Rieger, "Optimization Algorithms in Physics", Berlin: Wiley-
	VCH, 2002. (QC20.7.C58 H37 2002)
4.	David P Landau, Kurt Binder, "A Guide to Monte Carlo Simulations in Statistical Physics",
	Cambridge, UK; New York: Cambridge University Press, 2005. (QC174.85.M64 L36 2005)
5.	Kurt Binder, "Monte Carlo and Molecular Dynamics Simulations in Polymer Science [electronic
	resource]", New York: Oxford University Press, 1995. (QD381.9.E4 M66 1995eb)
6.	"The Finite Element Method: Basic Concepts and Applications with MATLAB, MAPLE, and
	COMSOL", D. W. Pepper and J. C. Heinrich, CRC Press, 2017.
7.	"Finite Difference Methods for Ordinary and Partial Differential Equations: Steady-State and
	Time-Dependent Problems", R. LeVeque, SIAM, 2007.