City University of Hong Kong Course Syllabus

offered by Department of Neuroscience with effect from Semester A 2023/24

Part I Course Overview

Course Title:	Human and Artificial Intelligence
Course Code:	NS5007
Course Duration:	One semester
Cradit Unita	2
Credit Units.	5
Level:	<u>P5</u>
Medium of	
Instruction:	English
Medium of	
Assessment:	English
Dronoquisitos	
(Course Code and Title)	NIL
_	
Precursors : (Course Code and Title)	NIL
()	
Equivalent Courses:	NII
(Course Coae and 1111e)	INIL
Exclusive Courses:	
(Course Code and Title)	NIL

Part II Course Details

1. Abstract

Bridging neuroscience and artificial intelligence (AI) can provide novel insights to drive both fields forward. This course aims at using a project based learning approach, to engage the students with both theoretical understanding as well as practical experience for cutting edge applications in neuroscience and AI. The projects focus on the following topics: (1) basic concepts and principles in AI, including machine learning and deep learning; (2) neuroscience-inspired artificial working memory; (3) biological vision and computer vision; (4) application of deep learning in neuroimaging; (5) AI applications in processing next generation sequencing data from genomic neuroscience; (6) applying AI in psychiatric disorders for diagnosis and personalized care; and (7) AI in processing brain waves and brain-machine interface. The course will include curated datasets for each topic and hands on practice, to highlight the power and limitations/pitfalls in adopting the AI technologies.

2. Course Intended Learning Outcomes (CILOs)

(CILOs state what the student is expected to be able to do at the end of the course according to a given standard of performance.)

No		Waighting *	Diago	10001 000	richad
INO.	CILOS	weignung	Discov	/ery-em	iched
		(if	curricu	ılum r	elated
		applicable)	learnin	ig outco	omes
			(please	e tick	where
			appropriate)		
			Al	A2	A3
1.	To understand the basic principles of AI algorithms,	25	Х	Х	
	including the basic theory and the inspiration from human				
	brain and neuroscience.				
2.	To understand how AI can be applied to study questions in	25	Х	Х	
	neuroscience as well as other fields, and the advantages and				
	disadvantages.				
3.	To gain practical experience in solving real world questions,	50	Х	х	х
	with AI-inspired algorithms, including model optimization				
	and interpretation.				
* If we	righting is assigned to CILOs, they should add up to 100%.	100%			

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

 A2: Ability Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to self-life problems.
A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

3. Teaching and Learning Activities (TLAs)

(TLAs designed to facilitate students' achievement of the CILOs.)

TLA	Brief Description	CIL	CILO No.			Hours/week	
		1	2	3	4		(if applicable)
Lectures	Theoretical concepts of the AI	х	х	х			
	algorithms, and introduction to						
	each selected topic and project						
Tutorials	Review papers and book chapters	х	х	х			
	in written essays, and oral						
	presentation in one selected topic.						
Practical labs	Investigate curated datasets for	х	x	x			
	each project, learn the pros and						
	cons of different algorithms, learn						
	the practical ways to optimize the						
	performance, and learn how to						
	interpretate the AI models.						

4. Assessment Tasks/Activities (ATs)

(ATs are designed to assess how well the students achieve the CILOs.)

Assessment Tasks/Activities	CILO No.						Weighting*	Remarks
	1	2	3	4				
Continuous Assessment: 100%	Continuous Assessment: 100%							
Oral presentation	х	х	х				30	
Written essays	х	Х	х				20	
Final project	х	Х	х				50	
Examination:% (duration: , if applicable)								

* The weightings should add up to 100%.

100%

5. Assessment Rubrics

(Grading of student achievements is based on student performance in assessment tasks/activities with the following rubrics.)

Assessment Task	Criterion	Excellent	Good	Marginal	Failure	
		(A+, A, A-)	(B+, B)	(B-, C+, C)	(F)	
1. Oral presentation	(1) Can clearly present their	Outstanding	Substantial performance	Unsatisfactory	Unsatisfactory	
	ideas in English with well-	performance on all	on all CILOS. Evidence	performance on a	performance on a	
	structured slides.	CILOs. Strong evidence	of grasp of subject, some	number of CILOS.	number of CILOS.	
	(2) Can answer to questions	of original thinking;	evidence of critical	Failure to meet specified	Failure to meet specified	
	comfortably and actively raise	good organization,	capacity and analytic	assessment	assessment	
	questions in others'	capacity to analyse and	ability; reasonable	requirements, little	requirements, little	
	presentations.	synthesize; superior	understanding of issues;	evidence of familiarity	evidence of familiarity	
2. Written essays	(1) Can summarize the	grasp of subject matter;	evidence of familiarity	with the subject matter;	with the subject matter;	
	essential concepts from the	evidence of extensive	with literature.	weakness in critical and	weakness in critical and	
	assigned reading materials,	knowledge base.		analytic skills; limited or	analytic skills; limited or	
	(2) Can make critiques on the			irrelevant use of	irrelevant use of	
	pros and cons of the method in			literature.	literature.	
	discussion.					
3. Final project	(1) Can select and apply the					
	proper AI models to the data.					
	(2) Can optimize the selected					
	AI models, and interpret the					
	model to address the biological					
	question.					

Part III Other Information (more details can be provided separately in the teaching plan)

1. Keyword Syllabus

Recurrent neural network (RNN) Convolutional neural network (CNN) Feature engineering Model training and testing Artificial working memory Computer vision Genomics and next generation sequencing Disease diagnostics Brain waves Brain-machine interface

2. Reading List

2.1 Compulsory Readings

(Compulsory readings can include books, book chapters, or journal/magazine articles. There are also collections of e-books, e-journals available from the CityU Library.)

Nil

2.2 Additional Readings

(Additional references for students to learn to expand their knowledge about the subject.)

1.	"Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and
	Techniques to Build Intelligent Systems"; 2nd edition; by Aurélien Géron; O'Reilly Media 2019
2.	"Data Mining: Practical Machine Learning Tools and Techniques"; 4th Edition; by
	Ian H. Witten, Eibe Frank, Mark A. Hall and Christopher Pal; Morgan Kaufmann 2016
3.	"Pattern Recognition and Machine Learning"; by Christopher M. Bishop; Springer 2006