City University of Hong Kong Course Syllabus

offered by Department of Materials Science and Engineering with effect from Semester A 2022/23

Part I Course Overv	view
Course Title:	Materials Characterization Techniques
Course Code:	MSE8016
Course Duration:	One semester
Credit Units:	3
Level:	R8
Medium of Instruction:	English
Medium of Assessment:	English
Prerequisites: (Course Code and Title)	Nil
Precursors: (Course Code and Title)	Nil
Equivalent Courses : (Course Code and Title)	Nil
Exclusive Courses: (Course Code and Title)	Nil

Part II Course Details

1. Abstract

This course introduces fundamental theoretical framework underlying the techniques and instrumentation used in characterizing structural, compositional, and surface properties of materials. The focus is on the acquisition of knowledge of characterization of materials properties and its corresponding physics, instrumentation consideration, strength, and limitations.

Topics covered: Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDS), Transmission Electron Microscopy (TEM), Scanning Probe Microscopy (SPM), Scanning Tunnelling Microscopy (STM), Atomic Force Microscopy (AFM), Electron Energy Loss Spectroscopy, X-Ray Photoelectron Spectroscopy (XPS), Auger Electron Spectroscopy (AES), Neutron Diffraction, X-ray Diffraction, Electron Diffraction, etc.

2. Course Intended Learning Outcomes (CILOs)

No.	CILOs	Weighting*		ery-eni		
		(if	curricu	ılum rel	lated	
		applicable)	learning outcomes			
			(please tick where			
			approp	appropriate)		
			A1	A2	A3	
1.	Recognize the characteristics of analytical instruments for			√		
	advanced materials, such as their sensitivities, spectral					
	resolution, spatial resolution, depth of analysis, etc.					
2.	Recognize the various types of materials characterization					
	techniques, and be able to relate them to the principles of					
	fundamental physics and chemistry.					
3.	Select advanced analytical techniques and apply them to					
	characterization of different materials and nanomaterials					
	under various analysis conditions.					
4.	Analyze, interpret and mutually correlate data to arrive at		V			
	meaningful conclusions.					
		100%				

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to self-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

3. Teaching and Learning Activities (TLAs)

TLA	Brief Description		No.		Hours/week (if	
		1	2	3	4	applicable)
Lectures	Explain key concepts, such as the		1			2hrs/wk
	foundation of knowledge in					
	modern methodologies of					
	materials characterization and					
	their applications					
Tutorials	Quizzes related to fundamental		1			1hr/wk
	knowledge; data analysis and					
	interpretation, such as					
	determination of chemical and					
	phase composition, crystal					
	structure					

4. Assessment Tasks/Activities (ATs)

Assessment Tasks/Activities	CILO No.				Weighting*	Remarks		
	1	2	3	4				
Continuous Assessment: 50%								
Assignments				$\overline{}$			15%	
Midterm test				$\overline{}$			35%	
Examination (duration: 2 hours)				$\overline{}$			50%	
							100%	

5. Assessment Rubrics

Applicable to students admitted in Semester A 2022/23 and thereafter

Assessment Task	Criterion	Excellent	Good	Marginal	Failure
		(A+, A, A-)	(B+, B)	(B-, C+, C)	(F)
1. Assignments	Ability to understand and explain the relevant materials	High	Moderate	Basic	Not even reaching marginal levels
2. Midterm test	Ability to understand and explain the relevant materials		Moderate	Basic	Not even reaching marginal levels
3.Final Examination	Ability to understand and explain the relevant materials		Moderate	Basic	Not even reaching marginal levels

Applicable to students admitted before Semester A 2022/23

Assessment Task	Criterion	Excellent	Good	Fair	Marginal	Failure
		(A+, A, A-)	(B+, B, B-)	(C+, C, C-)	(D)	(F)
1. Assignments	Ability to understand and explain the relevant materials	High	Significant	Moderate	Basic	Not even reaching marginal levels
2. Midterm test	Ability to understand and explain the relevant materials	High	Significant	Moderate	Basic	Not even reaching marginal levels
3. Final Examination	Ability to understand and explain the relevant materials	High	Significant	Moderate	Basic	Not even reaching marginal levels

Part III Other Information

1. Keyword Syllabus

- General classification of analytical techniques based on the detection source.
- Scanning electron microscopy (SEM). Environmental SEM. Energy dispersive x-ray spectroscopy (EDS).
- Crystallography and diffraction. Real and reciprocal space.
- Transmission electron spectroscopy (TEM). Bright and dark field imaging. High resolution TEM (HRTEM). Selected area diffraction (SAD).
- Analytical techniques associated with TEM, Electron energy loss spectroscopy (EELS). Energy dispersive x-ray spectroscopy integrated (EDS) in TEM.
- Auger electron spectroscopy (AES). Scanning Auger spectroscopy (SAM). X-ray photoelectron spectroscopy (XPS).
- X-ray Diffraction.
- Neutron Diffraction.
- Scanning probe microscopy (SPM). Atomic force microscopy (AFM). Scanning tunnelling microscopy (STM).

2. Reading List

2.1 Compulsory Readings

Nil

2.2 Additional Readings

1.	X-Ray Diffraction for Materials Research: From Fundamentals to Applications, by
	Myeongkyu Lee (2017)
2.	Transmission Electron Microscopy A Textbook for Materials Science, by David B.
	Williams, C. Barry Carter (2009)
3.	Transmission Electron Microscopy and Diffractometry of Materials, by Brent Fultz,
	James How (2008)
4.	Magnetic neutron diffraction (1st edition), Plenum Press, New York, by Yurii A.
	Izyumov, Ruslan P. Ozerov (1970)
5.	A Beginners' Guide to Scanning Electron Microscopy, by Anwar UI-Hamid (2018)
6.	Scanning Electron Microscopy: Physics of Image Formation and Microanalysis, by
	Ludwig Reimer (1998)
7.	Auger Electron Microscopy: Practical Application to Materials Analysis and
	Characterization of Surface, Interfaces, and Thin Films, by John Wolstenholme (2015)
8.	Advanced Transmission Electron Microscopy: Imaging and Diffraction in
	Nanoscience, by Jian Min Zuo, John C.H. (2017)
9.	Scanning Probe Microscopy: Atomic Force Microscopy and Scanning Tunneling
	Microscopy, by Bert Voigtländer (2016)