City University of Hong Kong Course Syllabus

offered by Department of Mechanical Engineering with effect from Semester B 2023 / 24

Part I Course Overv	riew
Course Title:	Applied Engineering Mechanics
Course Code:	MNE8113
Course Duration:	1 semester
Credit Units:	3 credits
Level:	R8
Medium of Instruction:	English
Medium of Assessment:	English
Prerequisites: (Course Code and Title)	Nil
Precursors:	
(Course Code and Title)	Bachelor level Statics, Dynamics and Mechanics of Materials
Equivalent Courses : (Course Code and Title)	MBE6116/MNE6116 Applied Engineering Mechanics
Exclusive Courses: (Course Code and Title)	Nil

Part II **Course Details**

1. **Abstract**

The course teaches the students who are seeking a degree of Doctor of Philosophy advanced knowledge of applied engineering mechanics which allows the students to apply more in-depth mechanics principles and theories into advanced research and development applications. The content include selected topics such as elasticity and plasticity, viscoelasticity, tribology, contact mechanics, failure theories, fracture and fatigue and so on.

2. **Course Intended Learning Outcomes (CILOs)**

(CILOs state what the student is expected to be able to do at the end of the course according to a given standard of performance.)

No.	CILOs	Weighting* (if applicable)	curricu learnin (please approp	g outco tick w riate)	ated omes here
			A1	A2	A3
1.	Describe the concepts of engineering mechanics and their impacts on the development of mechanical applications.		✓	✓	
2.	Identify mechanics related mechanical engineering problems, analyse the problems based on mechanics theories with property mathematical and numerical methods.			√	
3.	Conduct literature survey to a mechanics related research and development problem, analysis the problem with critical thinking generated from the mechanics concepts and demonstrate the idea with a mini-project.			√	
4.	Conduct laboratory work under guidance, analyse the experimental results obtained in the laboratory to evaluate the corresponding mechanical behavior of solid materials, discuss results, and conclude the work with critical thinking.			✓	√
* If we	righting is assigned to CILOs, they should add up to 100%.	N.A.			<u> </u>

^{*} If weighting is assigned to CILOs, they should add up to 100%.

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to self-life problems.

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

3. Teaching and Learning Activities (TLAs)

(TLAs designed to facilitate students' achievement of the CILOs.)

TLA	Brief Description	CII	CILO No.			Hours/week (if applicable)		
		1	2	3	4			
Lecture	Take place in classroom which consists of lectures on different engineering mechanics concepts and applications.	√	√	√		2 hrs/week for 13 weeks		
Tutorial	Take place in classroom which consists of tutorials and student activities on learning different engineering mechanics concepts and applications.	√	√	√		1 hr/week for 13 weeks		
Laboratory assisted mini project	Students are asked to work on laboratory exercises, summarize and discuss the results obtained from the experiments.				√	3 hrs/week for 2 weeks		

4. Assessment Tasks/Activities (ATs)

(ATs are designed to assess how well the students achieve the CILOs.)

Assessment Tasks/Activities	CILO No.		Weighting*	Remarks		
	1	2	3	4		
Continuous Assessment: 60%						
Test/Assignment	✓	✓			30%	
Mini projects/lab reports		✓	✓	30%		
Examination: 40% (duration: 2	hou	rs)	•	•		
Examination	✓	√			40%	
* The weightings should add up to 100%.				100%		

For a student to pass the course, at least 30% of the maximum mark for both coursework and examination should be obtained.

5. Assessment Rubrics

(Grading of student achievements is based on student performance in assessment tasks/activities with the following rubrics.)

Applicable to students admitted in Semester A 2022/23 and thereafter

Assessment Task	Criterion	Excellent	Good	Marginal	Failure
		(A+, A, A-)	(B+, B)	(B-, C+, C)	(F)
Examination/ Test/Assignment	Describe the fundamental concepts of applied mechanics and apply them to explain mechanical behavior of solid materials; Analyse and calculate the problems with mechanics theory.		Significant	Moderate	Not even reaching marginal levels
Mini-project	Ability to conduct effective literature survey, analyse the problem with been taught concepts and theories, and demonstrate the idea with a mini-project.	•	Significant	Moderate	Not even reaching marginal levels
Laboratory Report	Attendance of the lab session; Ability to explain the methodology and procedure and analyse the lab data/phenomena.	0	Significant	Moderate	Not even reaching marginal levels

Applicable to students admitted before Semester A 2022/23

Assessment Task	Criterion	Excellent	Good	Fair	Marginal	Failure
		(A+, A, A-)	(B+, B, B-)	(C+, C, C-)	(D)	(F)
Examination/ Test/Assignment	Describe the fundamental concepts of applied mechanics and apply them to explain mechanical behavior of solid materials; Analyse and calculate the problems with mechanics theory.	_	Significant	Moderate	Basic	Not even reaching marginal levels
Mini-project	Ability to conduct effective literature survey, analyse the problem with been taught concepts and theories, and demonstrate the idea with a mini-project.	•	Significant	Moderate	Basic	Not even reaching marginal levels
Laboratory Report	Attendance of the lab session; Ability to explain the methodology and procedure and analyse the lab data/phenomena.	High	Significant	Moderate	Basic	Not even reaching marginal levels

Part III Other Information (more details can be provided separately in the teaching plan)

1. Keyword Syllabus

(An indication of the key topics of the course.)

Elasticity and plasticity, viscoelasticity, tribology, contact mechanics, failure theories, fracture and fatigue, etc.

2. Reading List

2.1 Compulsory Readings

(Compulsory readings can include books, book chapters, or journal/magazine articles. There are also collections of e-books, e-journals available from the CityU Library.)

1.	"Mechanics of Materials", Ferdinand Beer, E. Johnston, John DeWolf and David Mazurek, 8th ed., SI Version, The McGraw-Hill, 2020.
2.	"Mechanics of Materials", Russell Hibbeler, 11 th ed., Pearson, 2022.
3.	Mechanics of Materials", Barry J. Goodno and James M. Gere, 9 th ed., SI Version, Cengage Learning, 2018.
4.	"Shigley's Mechanical Engineering Design", Richard G Budynas and Keith J Nisbett, 10 th ed., McGraw-Hill Higher Education, 2014.
5.	"Fundamentals of Machine Elements", Steven R. Schmid, Bernard J. Hamrock, Bo. O. Jacobson, 3 rd ed., SI Version, CRC Press, 2014.
6.	"Mechanical Properties of Engineered Materials", Wolé Soboyejo, 1st ed., CRC Press, 2002.
7.	"Materials Science and Engineering", William D. Callister Jr. and David G. Rethwisch, 9 th ed., SI Version, John Wiley & Sons, 2014.
8.	"Elasticity", James R. Barber, 3 rd ed., Dordrecht: Springer Netherlands, 2010. On-line version available through CityU library.

2.2 Additional Readings

(Additional references for students to learn to expand their knowledge about the subject.)

Students are encouraged to seek out related research publication to widen their scope in the subjects.