City University of Hong Kong Course Syllabus

offered by Department of Chemistry with effect from Semester A 2022/23

Part I Course Overview

Part II Course Details

1. Abstract

This course is a postgraduate taught course tailored for postgraduate research students only.

In this course students will:

- explore and apply the basic principles of photochemistry;
- analyze and interpret photoeffects of coordination chemistry;
- identify and apply the photochemical reactions of certain classes of organic compounds;
- explain examples of the effects of photochemistry in nature and in various applications.

2. Course Intended Learning Outcomes (CILOs)

No.	CILOs [#]	Weighting* (if	Discov curricu	/ery-eni ilum rel	riched lated
		applicable)	learnin	ng outco	omes
			(please	e tick	where
			approp	oriate)	
			A1	A2	A3
1.	Demonstrate an understanding of excited states and apply group theory to photochemical problems	20%	\checkmark		
2.	Explain natural and anthropogenically derived photochemical phenomena	20%	~	~	
3.	Describe and apply photochemical reactions of certain homologous series of organic compounds	20%	\checkmark	\checkmark	
4.	Analyze, discuss, conduct and defend their own	20%		\checkmark	\checkmark
	investigation into a photochemical phenomenom				
5.	Critically evaluate photochemical theories and literature	20%		\checkmark	\checkmark
		100%			

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to self-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

3. Teaching and Learning Activities (TLAs)

TLA	Brief Description	CII	CILO No.			Hours/week	
							(if applicable)
		1	2	3	4	5	
Group activities	Students will learn through large	\checkmark					
	group activities exploring problems						
	and calculations in photochemistry						
Lectures, videos	Lectures, videos and web-based		\checkmark				
and web-based	teaching methods will enable students						
teaching methods	to develop experience in recognizing						
-	and explaining natural and						
	anthropogenically derived						
	photochemical phenomena						
Group activities	Large and small group interactive			\checkmark			
and tutorials	questioning and tutorials will provide						
	opportunities for students to select						
	and apply photochemical reactions of						
	certain homologous series						
Oral	Student-centred learning and student				\checkmark		
presentations	oral presentations will form the basis						
•	for this activity where a specific						
	aspect of photochemistry is explored						
	in detail						
Literature review	Students will independently review					\checkmark	
	current theories and experiments in						
	photochemistry critically and both						
	give and receive feedback based these						
	insights from the current literature						

4. Assessment Tasks/Activities (ATs)

Assessment Tasks/Activities	CILO No.				Weighting*	Remarks	
	1	2	3	4	5		
Continuous Assessment: <u>30</u> %							
Assignment				\checkmark		5%	
Short Tests	\checkmark	\checkmark	\checkmark			10%	
Presentation				\checkmark		15%	
Examination: <u>70</u> % (duration: 3 hours)							
						100%	

Starting from Semester A, 2015-16, students must satisfy the following minimum passing requirement for courses offered by CHEM:

"A minimum of 40% in both coursework and examination components."

5. Assessment Rubrics

Applicable to students admitted in Semester A 2022/23 and thereafter

Assessment Task	Criterion	Excellent	Good	Marginal	Failure
		(A+, A, A-)	(B+, B)	(B-, C+, C)	(F)
1. Assignment	Ability to analyse and solve	High	Significant	Basic	Not even reaching
	problems relevant to				marginal levels
	photochemistry				
2. Short Tests	Ability to analyse and solve	High	Significant	Basic	Not even reaching
	problems relevant to				marginal levels
	photochemistry				
3. Presentation	Ability to analyze, discuss,	High	Significant	Basic	Not even reaching
	conduct and defend their own				marginal levels
	investigation into a				
	photochemical phenomenom				
4. Examination	Ability to demonstrate an	High	Significant	Basic	Not even reaching
	understanding of excited states				marginal levels
	and apply group theory to				
	photochemical problems, to				
	explain natural and				
	anthropogenically derived				
	photochemical phenomena,				
	and to describe and apply				
	photochemical reactions of				
	certain homologous series of				
	organic compounds				

Applicable to students admitted before Semester A 2022/23

Assessment Task	Criterion	Excellent	Good	Fair	Marginal	Failure
		(A+, A, A-)	(B+, B, B-)	(C+, C, C-)	(D)	(F)
1. Assignment	Ability to analyse and solve	High	Significant	Moderate	Basic	Not even reaching
	problems relevant to					marginal levels
	photochemistry					
2. Short Tests	Ability to analyse and solve	High	Significant	Moderate	Basic	Not even reaching
	problems relevant to					marginal levels
	photochemistry					
3. Presentation	Ability to analyze, discuss,	High	Significant	Moderate	Basic	Not even reaching
	conduct and defend their own					marginal levels
	investigation into a					
	photochemical phenomenom					
4. Examination	Ability to demonstrate an	High	Significant	Moderate	Basic	Not even reaching
	understanding of excited states					marginal levels
	and apply group theory to					
	photochemical problems, to					
	explain natural and					
	anthropogenically derived					
	photochemical phenomena,					
	and to describe and apply					
	photochemical reactions of					
	certain homologous series of					
	organic compounds					

Part III Other Information

1. Keyword Syllabus

Basic principles of photochemistry: photophysical processes and photodissociation. Absorption and emission of radiation. Nature of color.

Photochemical reactions of organic compounds.

Photochemistry and spectroscopy of transition metals and rare earths. Charge transfer photochemistry. Molecular emission. Energy transfer processes.

Kinetics of photophysical processes. Reactions of excited species: photochemical reactions. Techniques in photochemistry.

Lasers. Optical materials.

Atmospheric photochemistry. Photosynthesis.

Vision. Photoimaging. Photochromism and chemiluminescence. Solar energy storage. Photopolymerisation. Supramolecular photochemistry: photomolecular devices. Photomedicine.

2. Reading List

2.1 Compulsory Readings

1.	
2.	
3.	

2.2 Additional Readings

1.	Photochemistry, C.E. Wayne and R.P. Wayne. Oxford University Press. New York, 1996.
2.	Principles and Applications of Photochemistry, R.P. Wayne. Oxford University Press. New York,
	1988.
3.	Supramolecular Photochemistry, Ed. Vincenzo Balzani, NATO ASI Series. Reidel, Dordrecht,
	1987.
4.	Elements of Inorganic Photochemistry, G.J. Ferraudi. Wiley. Canada, 1988.
5.	Principles of Photochemistry. J.A. Barltrop and J.D. Coyle. Wiley. New York, 1978.
6.	Surface Photochemistry. ed. M. Anpo. Wiley, 1996.
7.	Introduction to Organic Photochemistry. J.D. Coyle. Wiley, 1998.
8.	Photochemistry and Photophysics of metal complexes. D.M. Roundhill. Plenum, New York, 1994.
9.	The Physics and Chemistry of Colour, K. Nassau. Wiley, 2001.
10.	Lasers in Chemistry, D.L. Andrews. Springer-Verlag, 1986.
11.	Modern Molecular Photochemistry, N.J. Turro. University Science Books, Mill Valley, California,
	USA, 1991.