City University of Hong Kong Course Syllabus

offered by Department of Chemistry with effect from Semester A 2022/23

Part I Course Over	view						
Course Title:	Materials Chemistry for Energy Technologies						
Course Code:	CHEM8015						
Course Duration:	1 semester						
Credit Units:	3 credits						
Level:	R8						
Medium of Instruction:	English						
Medium of Assessment:	English						
Prerequisites: (Course Code and Title)	Nil						
Precursors: (Course Code and Title)	Nil						
Equivalent Courses: (Course Code and Title)	BCH8015 Materials Chemistry for Energy Technologies						
Exclusive Courses: (Course Code and Title)	Nil						

1

Part II Course Details

1. Abstract

This course aims to develop an understanding of chemistry concepts to design and synthesis functional materials for energy harvesting and storage technologies. Conventional and emerging chemical synthesis and material processing technologies will be introduced. The core and fundamental elements of physics, chemistry and materials science will be recognized through study of the cutting-edge high-performance energy technologies.

The lecture content will provide the chemistry of materials for energy conversion, including basics concepts and fundamentals of functional materials, chemical synthesis and materials preparation, and their materials properties. The lecture topics will be discussed in the following subjects: Photovoltaic materials and technologies including c-Si solar cells, thin film solar cell (CdTe, CIGS, amorphous Si), organic solar cells, dye-sensitized solar cells, quantum dot solar cells, perovskite solar cells; Energy storage materials technologies, battery and super capacitor; Thermoelectric solar cells; fuel cells; water splitting.

2. Course Intended Learning Outcomes (CILOs)

No.	CILOs#	Weighting*	Discov	ery-eni	riched
		(if	curricu	ılum rel	lated
		applicable)	learnin	g outco	omes
			(please	e tick	where
			approp	riate)	
			A1	A2	A3
1.	Understand the chemistry used to prepare the materials and	20%	✓	✓	
	their properties and application for energy conversion and				
	storage				
2.	Recognize the conventional and emerging chemical	20%	✓	✓	
	synthesis and material processing technologies for energy				
	technologies;				
3.	Apply chemistry concepts and principle to analyse the	20%	✓	✓	✓
	formulation, composition and chemical structure of				
	functional materials;				
4.	Assess the current stage of existing high-performance	20%	✓	✓	✓
	energy technologies and conduct the analysis of their future				
	potentials;				
5.	Be able to define materials properties with the key	20%	✓	✓	✓
	structure-property relationship and good communication in				
	teamwork				
		100%			

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to self-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

3. Teaching and Learning Activities (TLAs)

TLA	TLA Brief Description		CILO No.				Hours/week	
		1	2	3	4	5	(if applicable)	
Lecture	basic concepts and fundamentals of functional materials, chemical synthesis and materials preparation, and their energy application	✓	✓	✓	✓	✓	26 hours in total	
Small group presentation, Proposal report	prepare group presentation and proposal report for a selected topic		√	√	√		10 hours in total	
Laboratory Exercise	Lab visit for the fabrication and tests of some energy conversion or storage devices			√	✓	√	6 hours in total	

4. Assessment Tasks/Activities (ATs)

Assessment Tasks/Activities	CIL	CILO No.					Weighting*	Remarks
	1	2	3	4	5			
Continuous Assessment: 60%								
Class discussion/Quiz	✓	✓	✓	✓	✓		15%	
Group presentation		✓	✓	✓			25%	
Proposal report		✓	✓	✓	✓		20%	
Examination: 40% (duration: 150 min)								
Examination	✓	✓	✓	✓	✓		40%	
	•	•	•	•	•	•	100%	

Starting from Semester A, 2015-16, students must satisfy the following minimum passing requirement for courses offered by CHEM:

[&]quot;A minimum of 40% in both coursework and examination components."

5. Assessment Rubrics

Applicable to students admitted in Semester A 2022/23 and thereafter

Assessment Task	Criterion	Excellent	Good	Marginal	Failure
1. Class quiz and discussion	Understand the concepts and fundamentals of functional materials, chemical synthesis and materials preparation, and their application	(A+, A, A-) High	(B+, B) Significant	(B-, C+, C) Basic	Not even reaching marginal levels
2. Group presentation	Apply and assess the current stage of existing high-performance energy technologies through using chemistry concepts and principles	High	Significant	Basic	Not even reaching marginal levels
3. Proposal report	Be able to predict and analysis development and potential of energy application	High	Significant	Basic	Not even reaching marginal levels
4. Examination	Define and analysis the chemical synthesis and material processing technologies for energy technologies	High	Significant	Basic	Not even reaching marginal levels

Applicable to students admitted before Semester A 2022/23

Assessment Task	Criterion	Excellent	Good	Fair	Marginal	Failure
		(A+, A, A-)	(B+, B, B-)	(C+, C, C-)	(D)	(F)
1. Class quiz and discussion	Understand the concepts and fundamentals of functional materials, chemical synthesis and materials preparation, and their application	High	Significant	Moderate	Basic	Not even reaching marginal levels
2. Group presentation	Apply and assess the current stage of existing high-performance energy technologies through using chemistry concepts and principles	High	Significant	Moderate	Basic	Not even reaching marginal levels
3. Proposal report	Be able to predict and analysis development and potential of energy application	High	Significant	Moderate	Basic	Not even reaching marginal levels
4. Examination	Define and analysis the chemical synthesis and material processing technologies for energy technologies	High	Significant	Moderate	Basic	Not even reaching marginal levels

Part III Other Information

1. Keyword Syllabus

Basics concepts and fundamentals of functional materials, chemical synthesis and materials preparation, and their materials properties; Photovoltaic materials and technologies including c-Si solar cells, thin film solar cell (CdTe, CIGS, amorphous Si), organic solar cells, dye-sensitized solar cells, quantum dot solar cells, perovskite solar cells; Energy storage materials technologies, battery and super capacitor; Thermoelectric solar cells; fuel cells; water splitting.

2. Reading List

2.1 Compulsory Readings

1.	Selected research reviews
2.	
3.	

2.2 Additional Readings

1.	Duncan W. Bruce, Dermot O'Hare, Richard I. Walton Energy Materials, 1st ed.; Wiley:
	Hoboken, 2011
2.	Harry R. Allcock Introduction to Materials Chemistry, 1st ed.; Wiley: Hoboken, 2008
3.	Rolando RM, The Physical Chemistry of Materials: Energy and Environmental Applications,
	1st ed. CRC Press, Florida, 2009